
C H A P T E R 2 8

PROTOTYPE 1:
APPLE PICKER
FOR UNITY 5.X

In	the	pages	below,	I've	replaced	the	sections	of	Chapter	28	that	

used	GUIText	with	new	pages	that	take	advantage	of	the	UGUI	

(Unity	Graphical	User	Interface)	system	that	first	appeared	in	

Unity	4.6.	

These	pages	are	not	the	whole	chapter	and	only	replace	parts	of	

pages	440-442	and	445-446.	

	 	 	 	 –	Jeremy	Bond	

(Several pages of the chapter are skipped here.)

GUI and Game Management
The	final	things	to	add	to	our	game	are	the	GUI	and	game	management	that	will	make	it	feel	like	more	of	a	real	game.	The	GUI	
element	we'll	add	is	a	score	counter,	and	the	game	management	elements	we'll	add	are	levels	and	lives.	

Score Counter
The	score	counter	will	help	players	get	a	sense	of	their	level	of	achievement	in	the	game.	

Open	_Scene_0	by	double-clicking	it	in	the	Project	pane.	Then	go	to	the	menu	bar	and	choose	GameObject	>	UI	>	Text.	Because	this	is	
the	first	UGUI	(Unity	Graphical	User	Interface)	element	to	be	added	to	this	scene,	it	will	add	several	things	to	the	Hierarchy	pane.	The	
first	you'll	see	is	a	Canvas.	The	Canvas	is	the	2-dimensional	board	on	which	the	GUI	will	be	arranged.	Looking	in	the	Scene	pane,	you	
should	also	see	a	very	large	2D	box	extending	from	the	origin	out	very	far	in	the	x	and	y	directions.	Double	click	on	Canvas	in	the	
Hierarchy	to	zoom	out	and	see	the	whole	thing.	This	will	be	scaled	to	match	your	Game	pane,	so	if	you	have	the	Game	pane	set	to	a	
16:9	aspect	ratio,	the	Canvas	will	follow	suit.	

The	other	GameObject	added	at	the	top	level	of	the	Hierarchy	is	the	EventSystem.	The	EventSystem	is	what	allows	buttons,	sliders,	
and	such	that	you	build	in	UGUI	to	work,	however,	we	will	not	be	making	use	of	it	in	this	prototype.	

Below	the	Canvas,	you	will	see	a	Text	GameObject.	Double-click	on	the	Text	GameObject	in	the	Hierarchy	pane	to	zoom	in	on	it.	It	is	
very	likely	that	the	text	color	defaulted	to	black,	which	may	be	difficult	to	see	over	the	background	of	the	Scene	pane.	Select	the	Text	
GameObject	in	the	Hierarchy	and	use	the	Inspector	pane	to	change	its	name	to	HighScore.	Follow	these	directions	to	make	the	
HighScore	Inspector	match	that	shown	in	Figure	28.10:	

1.	 In	the	RectTransform	component	of	the	Inspector:	

■ Set	Anchors	Min	X=0,	Min	Y=1,	Max	X=0,	and	Max	Y=1.	

■ Set	Pivot	X=0	and	Y=1.	

■ Set	Pos	X=10,	Pos	Y	=	-6,	and	Pos	Z	=	0.	

■ Set	Width=256	and	Height=32.	

■ After	doing	this,	you	may	want	to	double-click	HighScore	in	the	Hierarchy	again	to	re-center	it	in	the	Scene	pane.	

2.	 In	the	Text	(Script)	component	of	the	Inspector:	

■ Set	the	text	to	"High	Score:	1000"	(without	the	quotes	around	it).	

■ Set	the	Font	Style	to	Bold.	

■ Set	the	Font	Size	to	28.	

■ Set	the	Color	to	white,	which	will	make	it	much	more	visible	in	the	Game	pane.	

Now,	right-click	on	HighScore	in	the	Hierarchy	and	choose	Duplicate.	Select	the	new	HighScore	(1)	GameObject	and	change	its	name	
to	ScoreCounter.	Then	alter	its	values	in	the	Inspector	to	match	those	shown	in	Figure	28.10.	Don't	forget	to	set	the	Anchors	and	
Pivot	in	the	RectTransform	component	and	the	Alignment	in	the	Text	component.	You'll	notice	that	when	you	change	the	Anchors	or	
Pivot	in	the	RectTransform,	Unity	automatically	changes	the	Pos	X	to	keep	the	ScoreCounter	in	the	same	place	within	the	Canvas.	To	
prevent	Unity	from	doing	this,	click	the	R	button	in	the	RectTransform	that	is	shown	selected	in	the	ScoreCounter	Inspector	in	Figure	
28.10.		

Figure	28.10	 RectTransform	and	Text	component	settings	for	HighScore	and	ScoreCounter	

As	you've	seen	here,	the	coordinates	for	UGUI	GameObjects	differ	completely	from	those	for	regular	GameObjects	and	use	a	
RectTransform	instead	of	a	regular	Transform.	The	coordinates	for	a	RectTransform	are	all	relative	to	the	Canvas	parent	of	the	UGUI	
GameObject.	Clicking	the	help	icon	for	the	RectTransform	component	(circled	in	Figure	28.10)	can	give	you	more	information	about	
how	this	works.	

Add Points for Each Caught Apple
There	are	two	scripts	that	are	notified	when	a	collision	occurs	between	an	apple	and	a	basket:	the	Apple	and	Basket	scripts.	In	this	
game,	there	is	already	an	OnCollisionEnter()	method	on	the	Basket	C#	script,	so	we'll	modify	this	to	give	the	player	points	for	each	
apple	that	is	caught.	100	points	per	apple	seems	like	a	reasonable	number	(though	I've	personally	always	thought	it	was	a	little	
ridiculous	to	have	those	extra	zeroes	at	the	end	of	scores).	Open	the	Basket	script	in	MonoDevelop	and	add	the	bolded	lines	shown	
here:	

using UnityEngine;
using System.Collections;
using UnityEngine.UI; // This line enables use of UGUI features. // 1

public class Basket : MonoBehaviour {

 public Text scoreGT; // 1

 void Update () {
 …
 }

 void Start() {
 // Find a reference to the ScoreCounter GameObject
 GameObject scoreGO = GameObject.Find("ScoreCounter"); // 2
 // Get the Text Component of that GameObject
 scoreGT = scoreGO.GetComponent<Text>(); // 3
 // Set the starting number of points to 0
 scoreGT.text = "0";
 }

 void OnCollisionEnter(Collision coll) {
 // Find out what hit this Basket
 GameObject collidedWith = coll.gameObject;
 if (collidedWith.tag == "Apple") {
 Destroy(collidedWith);
 }

 // Parse the text of the scoreGT into an int
 int score = int.Parse(scoreGT.text); // 4
 // Add points for catching the apple
 score += 100;
 // Convert the score back to a string and display it
 scoreGT.text = score.ToString();
 }
}

		1.	 Be	sure	you	don't	neglect	to	enter	these	lines.	They	are	separated	from	the	others.	

		2.	 GameObject.Find("ScoreCounter")	searches	through	all	the	GameObjects	in	the	scene	for	one	named	"ScoreCounter"	and	
assigns	it	to	the	local	variable	scoreGO.	

		3.	 scoreGO.Getcomponent<Text>()	searches	for	a	Text	component	on	the	scoreGO	GameObject,	and	this	is	assigned	to	the	public	
field	scoreGT.	The	starting	score	is	then	set	to	zero	on	the	next	line.	Without	the	using UnityEngine.UI;	line	above,	the	Text	
component	would	not	be	defined	for	C#	within	Unity.	As	Unity	Technology's	coding	practices	get	stronger,	they	are	moving	to	
more	of	a	model	like	this	where	you	must	include	the	code	libraries	for	their	new	features	manually.	

		4.	 int.Parse(scoreGT.text)	takes	the	text	shown	in	ScoreCounter	and	converts	it	to	an	integer.	100	points	are	added	to	the	int	
score,	and	it	is	then	assigned	back	to	the	text	of	scoreGT	after	being	parsed	from	an	int	to	a	string	by	score.ToString().	

(Several pages of the chapter are skipped here.)

Adding a High Score
Now	we'll	make	use	of	the	HighScore	Text	that	you	created	earlier.	Create	a	new	C#	script	named	HighScore,	attach	it	to	the	
HighScore	GameObject	in	the	Hierarchy	pane,	and	give	it	the	following	code:	

using UnityEngine;
using System.Collections;
using UnityEngine.UI; // Remember, we need this line for UGUI to work.

public class HighScore : MonoBehaviour {
 static public int score = 1000;

 void Update () {
 Text gt = this.GetComponent<Text>();
 gt.text = "High Score: "+score;
 }
}

The	lines	in	Update()	simply	display	the	value	of	score	in	the	Text	component.	It	is	not	necessary	to	call	ToString()	on	the	score	in	
this	instance	because	when	the	+	operator	is	used	to	concatenate	a	string	with	another	data	type	(the	"High Score: "	string	literal	is	
concatenated	with	the	int	score	in	this	case),	ToString()	is	called	implicitly	(that	is,	automatically).	

Making	the	int	score	not	only	public	but	also	static	gives	us	the	ability	to	access	it	from	any	other	script	by	simply	typing	
HighScore.score.	This	is	one	of	the	powers	of	static	variables	that	we	will	use	throughout	the	prototypes	in	this	book.	Open	the	
Basket	C#	script	and	add	the	following	lines	to	see	how	this	is	used:	

 void OnCollisionEnter(Collision coll) {
 …
 // Convert the score back to a string and display it
 scoreGT.text = score.ToString();

 // Track the high score
 if (score > HighScore.score) {
 HighScore.score = score;
 }
 }

Now	HighScore.score	is	set	any	time	the	current	score	exceeds	it.	

