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to debug your code
– And, the MonoDevelop debugger can connect to an iOS or 

Android device and debug code running on the device!!!
• This is very helpful for finding issues with touch interfaces
• Can be done over either a cable or WiFi!

– The book has detailed instructions for using the debugger
3



Types of Bugs

4



Types of Bugs
§ Compile-Time Bugs

4



Types of Bugs
§ Compile-Time Bugs

– A bug found in the syntax of your code

4



Types of Bugs
§ Compile-Time Bugs

– A bug found in the syntax of your code
– Compile-time bugs prevent your code from compiling

4



Types of Bugs
§ Compile-Time Bugs

– A bug found in the syntax of your code
– Compile-time bugs prevent your code from compiling

• Makes it unusable in Unity until the bug is resolved

4



Types of Bugs
§ Compile-Time Bugs

– A bug found in the syntax of your code
– Compile-time bugs prevent your code from compiling

• Makes it unusable in Unity until the bug is resolved
– Compile-time bugs usually cause very specific errors

4



Types of Bugs
§ Compile-Time Bugs

– A bug found in the syntax of your code
– Compile-time bugs prevent your code from compiling

• Makes it unusable in Unity until the bug is resolved
– Compile-time bugs usually cause very specific errors

• The error below is on line 4, character 14 of CubeSpawner1.cs

4



Types of Bugs
§ Compile-Time Bugs

– A bug found in the syntax of your code
– Compile-time bugs prevent your code from compiling

• Makes it unusable in Unity until the bug is resolved
– Compile-time bugs usually cause very specific errors

• The error below is on line 4, character 14 of CubeSpawner1.cs

4



Types of Bugs
§ Compile-Time Bugs

– A bug found in the syntax of your code
– Compile-time bugs prevent your code from compiling

• Makes it unusable in Unity until the bug is resolved
– Compile-time bugs usually cause very specific errors

• The error below is on line 4, character 14 of CubeSpawner1.cs

4



Anatomy of a Compile-Time Bug

5



Anatomy of a Compile-Time Bug

5



Anatomy of a Compile-Time Bug

§ Click the error message to get more information

5



Anatomy of a Compile-Time Bug

§ Click the error message to get more information

6



Anatomy of a Compile-Time Bug

§ Click the error message to get more information

6



Anatomy of a Compile-Time Bug

§ Click the error message to get more information
§ The full error text can usually tell you what's wrong

6



Anatomy of a Compile-Time Bug

§ Click the error message to get more information
§ The full error text can usually tell you what's wrong

7



Anatomy of a Compile-Time Bug

§ Click the error message to get more information
§ The full error text can usually tell you what's wrong

7



Anatomy of a Compile-Time Bug

§ Click the error message to get more information
§ The full error text can usually tell you what's wrong

– If not, search the Internet for the error number

7



Anatomy of a Compile-Time Bug

§ Click the error message to get more information
§ The full error text can usually tell you what's wrong

– If not, search the Internet for the error number
– Example: "Unity error CS0101"

7



Anatomy of a Compile-Time Bug

§ Click the error message to get more information
§ The full error text can usually tell you what's wrong

– If not, search the Internet for the error number
– Example: "Unity error CS0101"

• Unity forums and StackOverflow.com have some of the best answers
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– Many "Unexpected symbol" errors are caused by a 

semicolon missing on a previous line or a misplaced brace
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§ Error occurs when attempting to attach a script to a 
GameObject

– Caused by the name of the script not matching the name of 
the defined class

§ Example
– Script filename: CubeSpawner1 (or CubeSpawner1.cs)
– Class name: public class CubeSpawner : MonoBehaviour { … }

§ To Fix: Match the names to each other
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– Error can only tell you the line number 
– These are difficult to debug!
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– It's also surprisingly easy to learn to use
– The Debugger can also help you understand complex code

• Use it on the code from the book if you're ever confused

§ You can also code for Unity using Microsoft Visual 
Studio, which has its own debugger

– Lots of information online about how to set this up
§ Next Chapter: Classes

– Learn about how classes combine data and functionality
– All the code you write in Unity C# will be in classes
– Classes are also the key to Object-Oriented Programming


