
DEBUGGING

CHAPTER 24

1

Topics

2

Topics
§ Getting Started with Debugging

2

Topics
§ Getting Started with Debugging
§ Types of Bugs

2

Topics
§ Getting Started with Debugging
§ Types of Bugs

– Compile-Time Bugs

2

Topics
§ Getting Started with Debugging
§ Types of Bugs

– Compile-Time Bugs
– Bugs Attaching Scripts

2

Topics
§ Getting Started with Debugging
§ Types of Bugs

– Compile-Time Bugs
– Bugs Attaching Scripts
– Runtime Errors

2

Topics
§ Getting Started with Debugging
§ Types of Bugs

– Compile-Time Bugs
– Bugs Attaching Scripts
– Runtime Errors

§ Stepping Through Code with the Debugger

2

Topics
§ Getting Started with Debugging
§ Types of Bugs

– Compile-Time Bugs
– Bugs Attaching Scripts
– Runtime Errors

§ Stepping Through Code with the Debugger
– Attaching the Debugger to Unity

2

Topics
§ Getting Started with Debugging
§ Types of Bugs

– Compile-Time Bugs
– Bugs Attaching Scripts
– Runtime Errors

§ Stepping Through Code with the Debugger
– Attaching the Debugger to Unity

§ Watching Variables in the Debugger

2

Getting Started with Debugging

3

Getting Started with Debugging
§ Debugging is a way to step through and watch your

code as it is running

3

Getting Started with Debugging
§ Debugging is a way to step through and watch your

code as it is running
§ This can help you

3

Getting Started with Debugging
§ Debugging is a way to step through and watch your

code as it is running
§ This can help you

– Better understand code

3

Getting Started with Debugging
§ Debugging is a way to step through and watch your

code as it is running
§ This can help you

– Better understand code
– Find errors and bugs

3

Getting Started with Debugging
§ Debugging is a way to step through and watch your

code as it is running
§ This can help you

– Better understand code
– Find errors and bugs
– Track down inefficiencies

3

Getting Started with Debugging
§ Debugging is a way to step through and watch your

code as it is running
§ This can help you

– Better understand code
– Find errors and bugs
– Track down inefficiencies

§ Debugging is built in to Unity via MonoDevelop

3

Getting Started with Debugging
§ Debugging is a way to step through and watch your

code as it is running
§ This can help you

– Better understand code
– Find errors and bugs
– Track down inefficiencies

§ Debugging is built in to Unity via MonoDevelop
– The MonoDevelop debugger can attach to the Unity process

to debug your code

3

Getting Started with Debugging
§ Debugging is a way to step through and watch your

code as it is running
§ This can help you

– Better understand code
– Find errors and bugs
– Track down inefficiencies

§ Debugging is built in to Unity via MonoDevelop
– The MonoDevelop debugger can attach to the Unity process

to debug your code
– And, the MonoDevelop debugger can connect to an iOS or

Android device and debug code running on the device!!!

3

Getting Started with Debugging
§ Debugging is a way to step through and watch your

code as it is running
§ This can help you

– Better understand code
– Find errors and bugs
– Track down inefficiencies

§ Debugging is built in to Unity via MonoDevelop
– The MonoDevelop debugger can attach to the Unity process

to debug your code
– And, the MonoDevelop debugger can connect to an iOS or

Android device and debug code running on the device!!!
• This is very helpful for finding issues with touch interfaces

3

Getting Started with Debugging
§ Debugging is a way to step through and watch your

code as it is running
§ This can help you

– Better understand code
– Find errors and bugs
– Track down inefficiencies

§ Debugging is built in to Unity via MonoDevelop
– The MonoDevelop debugger can attach to the Unity process

to debug your code
– And, the MonoDevelop debugger can connect to an iOS or

Android device and debug code running on the device!!!
• This is very helpful for finding issues with touch interfaces
• Can be done over either a cable or WiFi!

3

Getting Started with Debugging
§ Debugging is a way to step through and watch your

code as it is running
§ This can help you

– Better understand code
– Find errors and bugs
– Track down inefficiencies

§ Debugging is built in to Unity via MonoDevelop
– The MonoDevelop debugger can attach to the Unity process

to debug your code
– And, the MonoDevelop debugger can connect to an iOS or

Android device and debug code running on the device!!!
• This is very helpful for finding issues with touch interfaces
• Can be done over either a cable or WiFi!

– The book has detailed instructions for using the debugger
3

Types of Bugs

4

Types of Bugs
§ Compile-Time Bugs

4

Types of Bugs
§ Compile-Time Bugs

– A bug found in the syntax of your code

4

Types of Bugs
§ Compile-Time Bugs

– A bug found in the syntax of your code
– Compile-time bugs prevent your code from compiling

4

Types of Bugs
§ Compile-Time Bugs

– A bug found in the syntax of your code
– Compile-time bugs prevent your code from compiling

• Makes it unusable in Unity until the bug is resolved

4

Types of Bugs
§ Compile-Time Bugs

– A bug found in the syntax of your code
– Compile-time bugs prevent your code from compiling

• Makes it unusable in Unity until the bug is resolved
– Compile-time bugs usually cause very specific errors

4

Types of Bugs
§ Compile-Time Bugs

– A bug found in the syntax of your code
– Compile-time bugs prevent your code from compiling

• Makes it unusable in Unity until the bug is resolved
– Compile-time bugs usually cause very specific errors

• The error below is on line 4, character 14 of CubeSpawner1.cs

4

Types of Bugs
§ Compile-Time Bugs

– A bug found in the syntax of your code
– Compile-time bugs prevent your code from compiling

• Makes it unusable in Unity until the bug is resolved
– Compile-time bugs usually cause very specific errors

• The error below is on line 4, character 14 of CubeSpawner1.cs

4

Types of Bugs
§ Compile-Time Bugs

– A bug found in the syntax of your code
– Compile-time bugs prevent your code from compiling

• Makes it unusable in Unity until the bug is resolved
– Compile-time bugs usually cause very specific errors

• The error below is on line 4, character 14 of CubeSpawner1.cs

4

Anatomy of a Compile-Time Bug

5

Anatomy of a Compile-Time Bug

5

Anatomy of a Compile-Time Bug

§ Click the error message to get more information

5

Anatomy of a Compile-Time Bug

§ Click the error message to get more information

6

Anatomy of a Compile-Time Bug

§ Click the error message to get more information

6

Anatomy of a Compile-Time Bug

§ Click the error message to get more information
§ The full error text can usually tell you what's wrong

6

Anatomy of a Compile-Time Bug

§ Click the error message to get more information
§ The full error text can usually tell you what's wrong

7

Anatomy of a Compile-Time Bug

§ Click the error message to get more information
§ The full error text can usually tell you what's wrong

7

Anatomy of a Compile-Time Bug

§ Click the error message to get more information
§ The full error text can usually tell you what's wrong

– If not, search the Internet for the error number

7

Anatomy of a Compile-Time Bug

§ Click the error message to get more information
§ The full error text can usually tell you what's wrong

– If not, search the Internet for the error number
– Example: "Unity error CS0101"

7

Anatomy of a Compile-Time Bug

§ Click the error message to get more information
§ The full error text can usually tell you what's wrong

– If not, search the Internet for the error number
– Example: "Unity error CS0101"

• Unity forums and StackOverflow.com have some of the best answers

7

Common Compile-Time Errors to Know

8

Common Compile-Time Errors to Know
§ error CS0101: The namespace 'global::' already

contains a definition for '______'

8

Common Compile-Time Errors to Know
§ error CS0101: The namespace 'global::' already

contains a definition for '______'
– Two scripts are trying to define the same class

8

Common Compile-Time Errors to Know
§ error CS0101: The namespace 'global::' already

contains a definition for '______'
– Two scripts are trying to define the same class

• Change the name of the class in one of the scripts

8

Common Compile-Time Errors to Know
§ error CS0101: The namespace 'global::' already

contains a definition for '______'
– Two scripts are trying to define the same class

• Change the name of the class in one of the scripts

§ error CS1525: Unexpected symbol '}'

8

Common Compile-Time Errors to Know
§ error CS0101: The namespace 'global::' already

contains a definition for '______'
– Two scripts are trying to define the same class

• Change the name of the class in one of the scripts

§ error CS1525: Unexpected symbol '}'
– Many "Unexpected symbol" errors are caused by a

semicolon missing on a previous line or a misplaced brace

8

Common Compile-Time Errors to Know
§ error CS0101: The namespace 'global::' already

contains a definition for '______'
– Two scripts are trying to define the same class

• Change the name of the class in one of the scripts

§ error CS1525: Unexpected symbol '}'
– Many "Unexpected symbol" errors are caused by a

semicolon missing on a previous line or a misplaced brace
• Check line endings for semicolons ;

8

Common Compile-Time Errors to Know
§ error CS0101: The namespace 'global::' already

contains a definition for '______'
– Two scripts are trying to define the same class

• Change the name of the class in one of the scripts

§ error CS1525: Unexpected symbol '}'
– Many "Unexpected symbol" errors are caused by a

semicolon missing on a previous line or a misplaced brace
• Check line endings for semicolons ;
• Check to make sure all braces have a mate { }

8

Bugs Attaching Scripts to GameObjects

9

Bugs Attaching Scripts to GameObjects

§ Error occurs when attempting to attach a script to a
GameObject

9

Bugs Attaching Scripts to GameObjects

§ Error occurs when attempting to attach a script to a
GameObject

– Caused by the name of the script not matching the name of
the defined class

9

Bugs Attaching Scripts to GameObjects

§ Error occurs when attempting to attach a script to a
GameObject

– Caused by the name of the script not matching the name of
the defined class

§ Example

9

Bugs Attaching Scripts to GameObjects

§ Error occurs when attempting to attach a script to a
GameObject

– Caused by the name of the script not matching the name of
the defined class

§ Example
– Script filename: CubeSpawner1 (or CubeSpawner1.cs)

9

Bugs Attaching Scripts to GameObjects

§ Error occurs when attempting to attach a script to a
GameObject

– Caused by the name of the script not matching the name of
the defined class

§ Example
– Script filename: CubeSpawner1 (or CubeSpawner1.cs)
– Class name: public class CubeSpawner : MonoBehaviour { … }

9

Bugs Attaching Scripts to GameObjects

§ Error occurs when attempting to attach a script to a
GameObject

– Caused by the name of the script not matching the name of
the defined class

§ Example
– Script filename: CubeSpawner1 (or CubeSpawner1.cs)
– Class name: public class CubeSpawner : MonoBehaviour { … }

§ To Fix: Match the names to each other
9

Types of Bugs

10

Types of Bugs
§ Runtime Errors

10

Types of Bugs
§ Runtime Errors

– A bug that occurs when your code is running

10

Types of Bugs
§ Runtime Errors

– A bug that occurs when your code is running
– Unity has no way of predicting these

10

Types of Bugs
§ Runtime Errors

– A bug that occurs when your code is running
– Unity has no way of predicting these

§ Most common types of Runtime Errors

10

Types of Bugs
§ Runtime Errors

– A bug that occurs when your code is running
– Unity has no way of predicting these

§ Most common types of Runtime Errors
– UnassignedReferenceException

10

Types of Bugs
§ Runtime Errors

– A bug that occurs when your code is running
– Unity has no way of predicting these

§ Most common types of Runtime Errors
– UnassignedReferenceException
– NullReferenceException

10

Common Runtime Errors

11

Common Runtime Errors
§ UnassignedReferenceException

11

Common Runtime Errors
§ UnassignedReferenceException

– A variable in the Inspector has not been set

11

Common Runtime Errors
§ UnassignedReferenceException

– A variable in the Inspector has not been set
• Most commonly GameObject prefabs for Instantiate() calls

11

Common Runtime Errors
§ UnassignedReferenceException

– A variable in the Inspector has not been set
• Most commonly GameObject prefabs for Instantiate() calls

– To Fix: Assign the variable in the Inspector

11

Common Runtime Errors

12

Common Runtime Errors
§ Null Reference Exception

12

Common Runtime Errors
§ Null Reference Exception

– Unity has been asked to access something that doesn't exist

12

Common Runtime Errors
§ Null Reference Exception

– Unity has been asked to access something that doesn't exist
– Example:

12

Common Runtime Errors
§ Null Reference Exception

– Unity has been asked to access something that doesn't exist
– Example:

 7! ! void Start () {  
 8! ! ! GameObject[] goArray = new GameObject[10];  
 9! ! ! print (goArray[5].transform.position);  
10! ! } // on line 9, goArray[5] is null, so it has no transform

12

Common Runtime Errors
§ Null Reference Exception

– Unity has been asked to access something that doesn't exist
– Example:

 7! ! void Start () {  
 8! ! ! GameObject[] goArray = new GameObject[10];  
 9! ! ! print (goArray[5].transform.position);  
10! ! } // on line 9, goArray[5] is null, so it has no transform

12

Common Runtime Errors
§ Null Reference Exception

– Unity has been asked to access something that doesn't exist
– Example:

 7! ! void Start () {  
 8! ! ! GameObject[] goArray = new GameObject[10];  
 9! ! ! print (goArray[5].transform.position);  
10! ! } // on line 9, goArray[5] is null, so it has no transform

12

Common Runtime Errors
§ Null Reference Exception

– Unity has been asked to access something that doesn't exist
– Example:

 7! ! void Start () {  
 8! ! ! GameObject[] goArray = new GameObject[10];  
 9! ! ! print (goArray[5].transform.position);  
10! ! } // on line 9, goArray[5] is null, so it has no transform

12

– Error can only tell you the line number

Common Runtime Errors
§ Null Reference Exception

– Unity has been asked to access something that doesn't exist
– Example:

 7! ! void Start () {  
 8! ! ! GameObject[] goArray = new GameObject[10];  
 9! ! ! print (goArray[5].transform.position);  
10! ! } // on line 9, goArray[5] is null, so it has no transform

12

– Error can only tell you the line number
– These are difficult to debug!

Stepping Through Code with the Debugger

13

Stepping Through Code with the Debugger
§ Step 1: Set a Breakpoint in your code

13

Stepping Through Code with the Debugger
§ Step 1: Set a Breakpoint in your code

13

Stepping Through Code with the Debugger
§ Step 1: Set a Breakpoint in your code

13

Stepping Through Code with the Debugger
§ Step 2: Attach the Debugger to the Unity process

14

Stepping Through Code with the Debugger
§ Step 2: Attach the Debugger to the Unity process

– Much more detail in the book (about a potential bug)

14

Stepping Through Code with the Debugger
§ Step 2: Attach the Debugger to the Unity process

– Much more detail in the book (about a potential bug)
– Click the Attach to Process button in MonoDevelop

14

Stepping Through Code with the Debugger
§ Step 2: Attach the Debugger to the Unity process

– Much more detail in the book (about a potential bug)
– Click the Attach to Process button in MonoDevelop

14

Stepping Through Code with the Debugger
§ Step 2: Attach the Debugger to the Unity process

– Much more detail in the book (about a potential bug)
– Click the Attach to Process button in MonoDevelop

14

Stepping Through Code with the Debugger
§ Step 2: Attach the Debugger to the Unity process

– Much more detail in the book (about a potential bug)
– Click the Attach to Process button in MonoDevelop

14

– Choose Unity Editor (Unity) from the process list & click Attach

Stepping Through Code with the Debugger
§ Step 2: Attach the Debugger to the Unity process

– Much more detail in the book (about a potential bug)
– Click the Attach to Process button in MonoDevelop

14

– Choose Unity Editor (Unity) from the process list & click Attach

Stepping Through Code with the Debugger
§ Step 2: Attach the Debugger to the Unity process

– Much more detail in the book (about a potential bug)
– Click the Attach to Process button in MonoDevelop

14

– Choose Unity Editor (Unity) from the process list & click Attach

Stepping Through Code with the Debugger
§ Step 2: Attach the Debugger to the Unity process

– Much more detail in the book (about a potential bug)
– Click the Attach to Process button in MonoDevelop

14

– Choose Unity Editor (Unity) from the process list & click Attach

Stepping Through Code with the Debugger
§ Step 3: Click Play in Unity

15

Stepping Through Code with the Debugger
§ Step 3: Click Play in Unity

– The Debugger will halt code execution at the Breakpoint

15

Stepping Through Code with the Debugger
§ Step 3: Click Play in Unity

16

Stepping Through Code with the Debugger
§ Step 3: Click Play in Unity

– The Debugger will halt code execution at the Breakpoint

16

Stepping Through Code with the Debugger
§ Step 3: Click Play in Unity

– The Debugger will halt code execution at the Breakpoint
– Unity will be completely frozen while the Debugger is halted

16

Stepping Through Code with the Debugger
§ Step 3: Click Play in Unity

– The Debugger will halt code execution at the Breakpoint
– Unity will be completely frozen while the Debugger is halted

• This means you cannot switch back to the Unity process

16

Stepping Through Code with the Debugger
§ Step 3: Click Play in Unity

– The Debugger will halt code execution at the Breakpoint
– Unity will be completely frozen while the Debugger is halted

• This means you cannot switch back to the Unity process
– Important buttons at the top of the Debugger window

16

Stepping Through Code with the Debugger
§ Step 3: Click Play in Unity

– The Debugger will halt code execution at the Breakpoint
– Unity will be completely frozen while the Debugger is halted

• This means you cannot switch back to the Unity process
– Important buttons at the top of the Debugger window

16

Stepping Through Code with the Debugger
§ Step 3: Click Play in Unity

– The Debugger will halt code execution at the Breakpoint
– Unity will be completely frozen while the Debugger is halted

• This means you cannot switch back to the Unity process
– Important buttons at the top of the Debugger window

16

– Each controls the Debugger's execution

Stepping Through Code with the Debugger
§ Step 3: Click Play in Unity

– The Debugger will halt code execution at the Breakpoint
– Unity will be completely frozen while the Debugger is halted

• This means you cannot switch back to the Unity process
– Important buttons at the top of the Debugger window

16

– Each controls the Debugger's execution
• Run – Continues playing the project until another breakpoint is hit

Stepping Through Code with the Debugger
§ Step 3: Click Play in Unity

– The Debugger will halt code execution at the Breakpoint
– Unity will be completely frozen while the Debugger is halted

• This means you cannot switch back to the Unity process
– Important buttons at the top of the Debugger window

16

– Each controls the Debugger's execution
• Run – Continues playing the project until another breakpoint is hit

• If Run doesn't advance to the next frame, switch back to Unity

Stepping Through Code with the Debugger
§ Step 3: Click Play in Unity

– The Debugger will halt code execution at the Breakpoint
– Unity will be completely frozen while the Debugger is halted

• This means you cannot switch back to the Unity process
– Important buttons at the top of the Debugger window

16

– Each controls the Debugger's execution
• Run – Continues playing the project until another breakpoint is hit

• If Run doesn't advance to the next frame, switch back to Unity
• Step Over – Continues to the next line, stepping over function calls

Stepping Through Code with the Debugger
§ Step 3: Click Play in Unity

– The Debugger will halt code execution at the Breakpoint
– Unity will be completely frozen while the Debugger is halted

• This means you cannot switch back to the Unity process
– Important buttons at the top of the Debugger window

16

– Each controls the Debugger's execution
• Run – Continues playing the project until another breakpoint is hit

• If Run doesn't advance to the next frame, switch back to Unity
• Step Over – Continues to the next line, stepping over function calls
• Step In – Continues to the next line, stepping into function calls

Stepping Through Code with the Debugger
§ Step 3: Click Play in Unity

– The Debugger will halt code execution at the Breakpoint
– Unity will be completely frozen while the Debugger is halted

• This means you cannot switch back to the Unity process
– Important buttons at the top of the Debugger window

16

– Each controls the Debugger's execution
• Run – Continues playing the project until another breakpoint is hit

• If Run doesn't advance to the next frame, switch back to Unity
• Step Over – Continues to the next line, stepping over function calls
• Step In – Continues to the next line, stepping into function calls
• Step Out – Exits the current function but continues debugging

Stepping Through Code with the Debugger
§ Step 3: Click Play in Unity

– The Debugger will halt code execution at the Breakpoint
– Unity will be completely frozen while the Debugger is halted

• This means you cannot switch back to the Unity process
– Important buttons at the top of the Debugger window

16

– Each controls the Debugger's execution
• Run – Continues playing the project until another breakpoint is hit

• If Run doesn't advance to the next frame, switch back to Unity
• Step Over – Continues to the next line, stepping over function calls
• Step In – Continues to the next line, stepping into function calls
• Step Out – Exits the current function but continues debugging
• Detach Process – Stops debugging altogether

Watching Variables in the Debugger
§ Panes at the bottom of MonoDevelop have more info

17

Watching Variables in the Debugger
§ Panes at the bottom of MonoDevelop have more info

– Locals - Allows you to see all local variables

17

Watching Variables in the Debugger
§ Panes at the bottom of MonoDevelop have more info

– Locals - Allows you to see all local variables
• this is a reference to the current class instance

17

Watching Variables in the Debugger
§ Panes at the bottom of MonoDevelop have more info

– Locals - Allows you to see all local variables
• this is a reference to the current class instance

– Watch - Allows you to enter specific variables to watch

17

Watching Variables in the Debugger
§ Panes at the bottom of MonoDevelop have more info

– Locals - Allows you to see all local variables
• this is a reference to the current class instance

– Watch - Allows you to enter specific variables to watch
– Call Stack - Shows you which functions have been called to

get to this point in the code

17

Watching Variables in the Debugger
§ Panes at the bottom of MonoDevelop have more info

– Locals - Allows you to see all local variables
• this is a reference to the current class instance

– Watch - Allows you to enter specific variables to watch
– Call Stack - Shows you which functions have been called to

get to this point in the code
• Click a function to jump to it's local scope

17

Chapter 24 – Summary

18

Chapter 24 – Summary

18

§ Debugging is one of the most important processes in
coding

Chapter 24 – Summary

18

§ Debugging is one of the most important processes in
coding

– The MonoDevelop Debugger is one of the most powerful
tools for you to learn

Chapter 24 – Summary

18

§ Debugging is one of the most important processes in
coding

– The MonoDevelop Debugger is one of the most powerful
tools for you to learn

– It's also surprisingly easy to learn to use

Chapter 24 – Summary

18

§ Debugging is one of the most important processes in
coding

– The MonoDevelop Debugger is one of the most powerful
tools for you to learn

– It's also surprisingly easy to learn to use
– The Debugger can also help you understand complex code

Chapter 24 – Summary

18

§ Debugging is one of the most important processes in
coding

– The MonoDevelop Debugger is one of the most powerful
tools for you to learn

– It's also surprisingly easy to learn to use
– The Debugger can also help you understand complex code

• Use it on the code from the book if you're ever confused

Chapter 24 – Summary

18

§ Debugging is one of the most important processes in
coding

– The MonoDevelop Debugger is one of the most powerful
tools for you to learn

– It's also surprisingly easy to learn to use
– The Debugger can also help you understand complex code

• Use it on the code from the book if you're ever confused

§ You can also code for Unity using Microsoft Visual
Studio, which has its own debugger

Chapter 24 – Summary

18

§ Debugging is one of the most important processes in
coding

– The MonoDevelop Debugger is one of the most powerful
tools for you to learn

– It's also surprisingly easy to learn to use
– The Debugger can also help you understand complex code

• Use it on the code from the book if you're ever confused

§ You can also code for Unity using Microsoft Visual
Studio, which has its own debugger

– Lots of information online about how to set this up

Chapter 24 – Summary

18

§ Debugging is one of the most important processes in
coding

– The MonoDevelop Debugger is one of the most powerful
tools for you to learn

– It's also surprisingly easy to learn to use
– The Debugger can also help you understand complex code

• Use it on the code from the book if you're ever confused

§ You can also code for Unity using Microsoft Visual
Studio, which has its own debugger

– Lots of information online about how to set this up
§ Next Chapter: Classes

Chapter 24 – Summary

18

§ Debugging is one of the most important processes in
coding

– The MonoDevelop Debugger is one of the most powerful
tools for you to learn

– It's also surprisingly easy to learn to use
– The Debugger can also help you understand complex code

• Use it on the code from the book if you're ever confused

§ You can also code for Unity using Microsoft Visual
Studio, which has its own debugger

– Lots of information online about how to set this up
§ Next Chapter: Classes

– Learn about how classes combine data and functionality

Chapter 24 – Summary

18

§ Debugging is one of the most important processes in
coding

– The MonoDevelop Debugger is one of the most powerful
tools for you to learn

– It's also surprisingly easy to learn to use
– The Debugger can also help you understand complex code

• Use it on the code from the book if you're ever confused

§ You can also code for Unity using Microsoft Visual
Studio, which has its own debugger

– Lots of information online about how to set this up
§ Next Chapter: Classes

– Learn about how classes combine data and functionality
– All the code you write in Unity C# will be in classes

Chapter 24 – Summary

18

§ Debugging is one of the most important processes in
coding

– The MonoDevelop Debugger is one of the most powerful
tools for you to learn

– It's also surprisingly easy to learn to use
– The Debugger can also help you understand complex code

• Use it on the code from the book if you're ever confused

§ You can also code for Unity using Microsoft Visual
Studio, which has its own debugger

– Lots of information online about how to set this up
§ Next Chapter: Classes

– Learn about how classes combine data and functionality
– All the code you write in Unity C# will be in classes
– Classes are also the key to Object-Oriented Programming

