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§ A collection in C# is a group of several things that 

are referenced by a single variable
§ Similar to a pride of lions, parliament of rooks, 

murder of crows
§ Two most important C# collections are:

– List
– Array

§ Both Lists and arrays do appear in the Inspector
§ List is the most flexible and easiest to use, so we'll 

start with List
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§ Requires a new using line at the top of your script

using System.Collections.Generic;

§ List is a generic collection
– Generic collections can work for any data type

List<string> sList;!! // A List of strings
List<GameObject> goList;! // A List of GameObjects

§ A List must be defined before it can be used 
(because Lists default to null)

sList = new List<string>();!

§ Elements are added to Lists using the Add() method
sList.Add("Hello");
sList.Add("World");
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– Bracket access is zero indexed (i.e., starts at [0])
print( sList[0] );!! // Prints: "Hello"
print( sList[1] );!! // Prints: "World"

§ Lists have a Count of the number of elements
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§ Array is a much simpler collection than List

– Does not require any using statement at the top of a script

§ Not actually its own data type, but rather a collection 
of any data type

string[] sArray;! ! // An array of strings
GameObject[] goArray;! // An array of GameObjects

§ Arrays are created with a fixed length
– Arrays cannot expand to add more elements like Lists can

sArray = new string[4];! // An array of four strings
sArray = new string[] {"A","B","C","D"};

– Either of these arrays will only ever have a Length of 4
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§ Array elements are both accessed and assigned via 

bracket access
sArray[1] = "Bob";! // Assigns "Bob" to the 1st element
print( sArray[1] );! // Prints: "Bob"

§ It's possible to skip elements in an array
– The skipped elements are the default value for that type
string[] sArray = new string[4];! // 4-element string array
sArray[0] = "A";!! ! ! // ["A",null,null,null]
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§ Arrays have Length instead of Count
print( sArray.Length );! ! // Prints: 4
– This is similar to strings (which are collections of chars)
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string[,] s2D = new string[4,4];! // Makes a 4x4 array
s2D[0,0] = "A";
s2D[0,3] = "B";
s2D[1,2] = "C";
s2D[3,1] = "D";

– This would make the 2-dimensional array
| A |   |   | B |
|   |   | C |   |
|   |   |   |   |
| D |   |   |   |

– Length is still the total length of the array
print( s2D.Length );! // Prints: 16
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string str = "";
for ( int i=0; i<4; i++ ) {
    for ( int j=0; j<4; j++ ) {
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Multidimensional Arrays
string str = "";
for ( int i=0; i<4; i++ ) {
    for ( int j=0; j<4; j++ ) {
        if (s2D[i,j] != null) {
            str += "|" + s2D[i,j];
        } else {                     
            str += "|_";             
        }                            
    }
    str += "|"+"\n";
}
print( str );

– This prints:
|A|_|_|B|
|_|_|C|_|
|_|_|_|_|
|D|_|_|_|
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§ Both Lists and arrays can be composed of other 

Lists or arrays
string[][] jArray = new string[3][];   // Makes a 3x? array
jArray[0] = new string[4];
jArray[0][0] = "A";
jArray[0][3] = "B";
jArray[1] = new string[] {"C","D","E"};
jArray[2] = new string[] {"F","G"};

– This would make the jagged array
| A |   |   | B |
| C | D | E |
| F | G |

– Length is now accurate for each part of the jagged array
print( jArray.Length );! ! // Prints: 4
print( jArray[1].Length );! // Prints: 3
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foreach and Collections

§ Lists and arrays can be iterated over using foreach
string[] sArray = new string[] {"A","B","C","D"};
string str = "";
foreach (string s in sArray) {
    str += s;
}
print( s );! ! ! !    // Prints: "ABCD"

List<string> sList = new List<string>( sArray );
string str2 = "";
foreach (string s in sList) {
    str2 += s;
}
print( s2 );! ! ! !    // Prints: "ABCD"

§ Why can string s be declared twice?
– Because string s is local to each foreach loop
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When to Use List or Array
§ Each have pros and cons:

– List has flexible length, whereas array length is more 
difficult to change.

– Array is very slightly faster.
– Array allows multidimensional indices.
– Array allows empty elements in the middle of the collection.

§ Because they are simpler to implement and take less 
forethought (due to their flexible length), the author 
tends to use Lists much more often than arrays.

– This is especially true when prototyping games, since 
prototyping requires a lot of flexibility.
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Other Collection Types
§ ArrayList

– ArrayList is like a List except without a set type
– Extremely flexible, but I find them less useful and slower

§ Dictionary<key,value>
– A key / value pair

• The key could be a string, like a username
• The value would be the user data

– Used in some of the later tutorials in the book
– Requires using System.Collections.Generic;
– Very useful
– But don't appear properly in the Unity Inspector
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Chapter 22 – Summary
§ The collections we use in this book can hold any 

number of objects (of a single type)
§ List is the most easily usable collection type

– It requires using System.Collections.Generic;

§ Arrays are less flexible but also very useful
– Only arrays can be multidimensional

§ Both Lists and arrays can be jagged
§ I generally recommend Lists over arrays
§ Dictionaries will also be used in this book
§ Next Chapter: Functions!
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