
LISTS AND ARRAYS

CHAPTER 22

1

Topics

2

Topics
§ C# Collections

2

Topics
§ C# Collections
§ List

2

Topics
§ C# Collections
§ List

– Flexible collection of variable length

2

Topics
§ C# Collections
§ List

– Flexible collection of variable length

§ Array

2

Topics
§ C# Collections
§ List

– Flexible collection of variable length

§ Array
– Standard arrays

2

Topics
§ C# Collections
§ List

– Flexible collection of variable length

§ Array
– Standard arrays

§ Multidimensional Arrays

2

Topics
§ C# Collections
§ List

– Flexible collection of variable length

§ Array
– Standard arrays

§ Multidimensional Arrays
§ Jagged Lists & Arrays

2

Topics
§ C# Collections
§ List

– Flexible collection of variable length

§ Array
– Standard arrays

§ Multidimensional Arrays
§ Jagged Lists & Arrays
§ foreach and Collections

2

Topics
§ C# Collections
§ List

– Flexible collection of variable length

§ Array
– Standard arrays

§ Multidimensional Arrays
§ Jagged Lists & Arrays
§ foreach and Collections
§ When to Use List or Array

2

Topics
§ C# Collections
§ List

– Flexible collection of variable length

§ Array
– Standard arrays

§ Multidimensional Arrays
§ Jagged Lists & Arrays
§ foreach and Collections
§ When to Use List or Array
§ Other Collection Types

2

C# Collections

3

C# Collections
§ A collection in C# is a group of several things that

are referenced by a single variable

3

C# Collections
§ A collection in C# is a group of several things that

are referenced by a single variable
§ Similar to a pride of lions, parliament of rooks,

murder of crows

3

C# Collections
§ A collection in C# is a group of several things that

are referenced by a single variable
§ Similar to a pride of lions, parliament of rooks,

murder of crows

3Image from http://www.quickmeme.com/meme/35hla2

C# Collections
§ A collection in C# is a group of several things that

are referenced by a single variable
§ Similar to a pride of lions, parliament of rooks,

murder of crows
§ Two most important C# collections are:

4

C# Collections
§ A collection in C# is a group of several things that

are referenced by a single variable
§ Similar to a pride of lions, parliament of rooks,

murder of crows
§ Two most important C# collections are:

– List

4

C# Collections
§ A collection in C# is a group of several things that

are referenced by a single variable
§ Similar to a pride of lions, parliament of rooks,

murder of crows
§ Two most important C# collections are:

– List
– Array

4

C# Collections
§ A collection in C# is a group of several things that

are referenced by a single variable
§ Similar to a pride of lions, parliament of rooks,

murder of crows
§ Two most important C# collections are:

– List
– Array

§ Both Lists and arrays do appear in the Inspector

4

C# Collections
§ A collection in C# is a group of several things that

are referenced by a single variable
§ Similar to a pride of lions, parliament of rooks,

murder of crows
§ Two most important C# collections are:

– List
– Array

§ Both Lists and arrays do appear in the Inspector
§ List is the most flexible and easiest to use, so we'll

start with List

4

List

5

List
§ Requires a new using line at the top of your script

5

List
§ Requires a new using line at the top of your script

using System.Collections.Generic;

5

List
§ Requires a new using line at the top of your script

using System.Collections.Generic;

§ List is a generic collection

5

List
§ Requires a new using line at the top of your script

using System.Collections.Generic;

§ List is a generic collection
– Generic collections can work for any data type

5

List
§ Requires a new using line at the top of your script

using System.Collections.Generic;

§ List is a generic collection
– Generic collections can work for any data type

List<string> sList;!! // A List of strings
List<GameObject> goList;! // A List of GameObjects

5

List
§ Requires a new using line at the top of your script

using System.Collections.Generic;

§ List is a generic collection
– Generic collections can work for any data type

List<string> sList;!! // A List of strings
List<GameObject> goList;! // A List of GameObjects

§ A List must be defined before it can be used
(because Lists default to null)

5

List
§ Requires a new using line at the top of your script

using System.Collections.Generic;

§ List is a generic collection
– Generic collections can work for any data type

List<string> sList;!! // A List of strings
List<GameObject> goList;! // A List of GameObjects

§ A List must be defined before it can be used
(because Lists default to null)

sList = new List<string>();!

5

List
§ Requires a new using line at the top of your script

using System.Collections.Generic;

§ List is a generic collection
– Generic collections can work for any data type

List<string> sList;!! // A List of strings
List<GameObject> goList;! // A List of GameObjects

§ A List must be defined before it can be used
(because Lists default to null)

sList = new List<string>();!

§ Elements are added to Lists using the Add() method

5

List
§ Requires a new using line at the top of your script

using System.Collections.Generic;

§ List is a generic collection
– Generic collections can work for any data type

List<string> sList;!! // A List of strings
List<GameObject> goList;! // A List of GameObjects

§ A List must be defined before it can be used
(because Lists default to null)

sList = new List<string>();!

§ Elements are added to Lists using the Add() method
sList.Add("Hello");
sList.Add("World");

5

List

6

List
§ List elements are accessed via bracket access

6

List
§ List elements are accessed via bracket access

– Bracket access is zero indexed (i.e., starts at [0])

6

List
§ List elements are accessed via bracket access

– Bracket access is zero indexed (i.e., starts at [0])
print(sList[0]);!! // Prints: "Hello"
print(sList[1]);!! // Prints: "World"

6

List
§ List elements are accessed via bracket access

– Bracket access is zero indexed (i.e., starts at [0])
print(sList[0]);!! // Prints: "Hello"
print(sList[1]);!! // Prints: "World"

§ Lists have a Count of the number of elements

6

List
§ List elements are accessed via bracket access

– Bracket access is zero indexed (i.e., starts at [0])
print(sList[0]);!! // Prints: "Hello"
print(sList[1]);!! // Prints: "World"

§ Lists have a Count of the number of elements
print(sList.Count);! // Prints: "2"

6

List
§ List elements are accessed via bracket access

– Bracket access is zero indexed (i.e., starts at [0])
print(sList[0]);!! // Prints: "Hello"
print(sList[1]);!! // Prints: "World"

§ Lists have a Count of the number of elements
print(sList.Count);! // Prints: "2"

§ Lists can be cleared of all elements

6

List
§ List elements are accessed via bracket access

– Bracket access is zero indexed (i.e., starts at [0])
print(sList[0]);!! // Prints: "Hello"
print(sList[1]);!! // Prints: "World"

§ Lists have a Count of the number of elements
print(sList.Count);! // Prints: "2"

§ Lists can be cleared of all elements
sList.Clear();! ! // Empties sList

6

List

7

List
§ All these methods act on the List ["A","B","C","D"]

7

List
§ All these methods act on the List ["A","B","C","D"]

print(sList[0]);! ! // Prints: "A"

7

List
§ All these methods act on the List ["A","B","C","D"]

print(sList[0]);! ! // Prints: "A"
sList.Add("Apple");! ! // ["A","B","C","D","Apple"]

7

List
§ All these methods act on the List ["A","B","C","D"]

print(sList[0]);! ! // Prints: "A"
sList.Add("Apple");! ! // ["A","B","C","D","Apple"]
sList.Clear();! ! ! // []

7

List
§ All these methods act on the List ["A","B","C","D"]

print(sList[0]);! ! // Prints: "A"
sList.Add("Apple");! ! // ["A","B","C","D","Apple"]
sList.Clear();! ! ! // []
sList.IndexOf("B");! ! // 1 ("B" is the 1st element)

7

List
§ All these methods act on the List ["A","B","C","D"]

print(sList[0]);! ! // Prints: "A"
sList.Add("Apple");! ! // ["A","B","C","D","Apple"]
sList.Clear();! ! ! // []
sList.IndexOf("B");! ! // 1 ("B" is the 1st element)
sList.IndexOf("Bob");! ! // -1 ("Bob" is not in the List)

7

List
§ All these methods act on the List ["A","B","C","D"]

print(sList[0]);! ! // Prints: "A"
sList.Add("Apple");! ! // ["A","B","C","D","Apple"]
sList.Clear();! ! ! // []
sList.IndexOf("B");! ! // 1 ("B" is the 1st element)
sList.IndexOf("Bob");! ! // -1 ("Bob" is not in the List)
sList.Insert(2,"X");! ! // ["A","B","X","C","D"]

7

List
§ All these methods act on the List ["A","B","C","D"]

print(sList[0]);! ! // Prints: "A"
sList.Add("Apple");! ! // ["A","B","C","D","Apple"]
sList.Clear();! ! ! // []
sList.IndexOf("B");! ! // 1 ("B" is the 1st element)
sList.IndexOf("Bob");! ! // -1 ("Bob" is not in the List)
sList.Insert(2,"X");! ! // ["A","B","X","C","D"]
sList.Insert(4,"X");! ! // ["A","B","C","D","X"]

7

List
§ All these methods act on the List ["A","B","C","D"]

print(sList[0]);! ! // Prints: "A"
sList.Add("Apple");! ! // ["A","B","C","D","Apple"]
sList.Clear();! ! ! // []
sList.IndexOf("B");! ! // 1 ("B" is the 1st element)
sList.IndexOf("Bob");! ! // -1 ("Bob" is not in the List)
sList.Insert(2,"X");! ! // ["A","B","X","C","D"]
sList.Insert(4,"X");! ! // ["A","B","C","D","X"]
sList.Insert(5,"X");! ! // ERROR!!! Index out of range

7

List
§ All these methods act on the List ["A","B","C","D"]

print(sList[0]);! ! // Prints: "A"
sList.Add("Apple");! ! // ["A","B","C","D","Apple"]
sList.Clear();! ! ! // []
sList.IndexOf("B");! ! // 1 ("B" is the 1st element)
sList.IndexOf("Bob");! ! // -1 ("Bob" is not in the List)
sList.Insert(2,"X");! ! // ["A","B","X","C","D"]
sList.Insert(4,"X");! ! // ["A","B","C","D","X"]
sList.Insert(5,"X");! ! // ERROR!!! Index out of range
sList.Remove("C");! ! // ["A","B","D"]

7

List
§ All these methods act on the List ["A","B","C","D"]

print(sList[0]);! ! // Prints: "A"
sList.Add("Apple");! ! // ["A","B","C","D","Apple"]
sList.Clear();! ! ! // []
sList.IndexOf("B");! ! // 1 ("B" is the 1st element)
sList.IndexOf("Bob");! ! // -1 ("Bob" is not in the List)
sList.Insert(2,"X");! ! // ["A","B","X","C","D"]
sList.Insert(4,"X");! ! // ["A","B","C","D","X"]
sList.Insert(5,"X");! ! // ERROR!!! Index out of range
sList.Remove("C");! ! // ["A","B","D"]
sList.RemoveAt(1);! ! // ["A","C","D"]

7

List
§ All these methods act on the List ["A","B","C","D"]

print(sList[0]);! ! // Prints: "A"
sList.Add("Apple");! ! // ["A","B","C","D","Apple"]
sList.Clear();! ! ! // []
sList.IndexOf("B");! ! // 1 ("B" is the 1st element)
sList.IndexOf("Bob");! ! // -1 ("Bob" is not in the List)
sList.Insert(2,"X");! ! // ["A","B","X","C","D"]
sList.Insert(4,"X");! ! // ["A","B","C","D","X"]
sList.Insert(5,"X");! ! // ERROR!!! Index out of range
sList.Remove("C");! ! // ["A","B","D"]
sList.RemoveAt(1);! ! // ["A","C","D"]

§ Lists can be converted to arrays

7

List
§ All these methods act on the List ["A","B","C","D"]

print(sList[0]);! ! // Prints: "A"
sList.Add("Apple");! ! // ["A","B","C","D","Apple"]
sList.Clear();! ! ! // []
sList.IndexOf("B");! ! // 1 ("B" is the 1st element)
sList.IndexOf("Bob");! ! // -1 ("Bob" is not in the List)
sList.Insert(2,"X");! ! // ["A","B","X","C","D"]
sList.Insert(4,"X");! ! // ["A","B","C","D","X"]
sList.Insert(5,"X");! ! // ERROR!!! Index out of range
sList.Remove("C");! ! // ["A","B","D"]
sList.RemoveAt(1);! ! // ["A","C","D"]

§ Lists can be converted to arrays
string[] sArray = sList.ToArray();

7

Array

8

Array
§ Array is a much simpler collection than List

8

Array
§ Array is a much simpler collection than List

– Does not require any using statement at the top of a script

8

Array
§ Array is a much simpler collection than List

– Does not require any using statement at the top of a script

§ Not actually its own data type, but rather a collection
of any data type

8

Array
§ Array is a much simpler collection than List

– Does not require any using statement at the top of a script

§ Not actually its own data type, but rather a collection
of any data type

string[] sArray;! ! // An array of strings
GameObject[] goArray;! // An array of GameObjects

8

Array
§ Array is a much simpler collection than List

– Does not require any using statement at the top of a script

§ Not actually its own data type, but rather a collection
of any data type

string[] sArray;! ! // An array of strings
GameObject[] goArray;! // An array of GameObjects

§ Arrays are created with a fixed length

8

Array
§ Array is a much simpler collection than List

– Does not require any using statement at the top of a script

§ Not actually its own data type, but rather a collection
of any data type

string[] sArray;! ! // An array of strings
GameObject[] goArray;! // An array of GameObjects

§ Arrays are created with a fixed length
– Arrays cannot expand to add more elements like Lists can

8

Array
§ Array is a much simpler collection than List

– Does not require any using statement at the top of a script

§ Not actually its own data type, but rather a collection
of any data type

string[] sArray;! ! // An array of strings
GameObject[] goArray;! // An array of GameObjects

§ Arrays are created with a fixed length
– Arrays cannot expand to add more elements like Lists can

sArray = new string[4];! // An array of four strings

8

Array
§ Array is a much simpler collection than List

– Does not require any using statement at the top of a script

§ Not actually its own data type, but rather a collection
of any data type

string[] sArray;! ! // An array of strings
GameObject[] goArray;! // An array of GameObjects

§ Arrays are created with a fixed length
– Arrays cannot expand to add more elements like Lists can

sArray = new string[4];! // An array of four strings
sArray = new string[] {"A","B","C","D"};

8

Array
§ Array is a much simpler collection than List

– Does not require any using statement at the top of a script

§ Not actually its own data type, but rather a collection
of any data type

string[] sArray;! ! // An array of strings
GameObject[] goArray;! // An array of GameObjects

§ Arrays are created with a fixed length
– Arrays cannot expand to add more elements like Lists can

sArray = new string[4];! // An array of four strings
sArray = new string[] {"A","B","C","D"};

– Either of these arrays will only ever have a Length of 4

8

Array

9

Array
§ Array elements are both accessed and assigned via

bracket access

9

Array
§ Array elements are both accessed and assigned via

bracket access
sArray[1] = "Bob";! // Assigns "Bob" to the 1st element

9

Array
§ Array elements are both accessed and assigned via

bracket access
sArray[1] = "Bob";! // Assigns "Bob" to the 1st element
print(sArray[1]);! // Prints: "Bob"

9

Array
§ Array elements are both accessed and assigned via

bracket access
sArray[1] = "Bob";! // Assigns "Bob" to the 1st element
print(sArray[1]);! // Prints: "Bob"

§ It's possible to skip elements in an array

9

Array
§ Array elements are both accessed and assigned via

bracket access
sArray[1] = "Bob";! // Assigns "Bob" to the 1st element
print(sArray[1]);! // Prints: "Bob"

§ It's possible to skip elements in an array
– The skipped elements are the default value for that type

9

Array
§ Array elements are both accessed and assigned via

bracket access
sArray[1] = "Bob";! // Assigns "Bob" to the 1st element
print(sArray[1]);! // Prints: "Bob"

§ It's possible to skip elements in an array
– The skipped elements are the default value for that type
string[] sArray = new string[4];! // 4-element string array

9

Array
§ Array elements are both accessed and assigned via

bracket access
sArray[1] = "Bob";! // Assigns "Bob" to the 1st element
print(sArray[1]);! // Prints: "Bob"

§ It's possible to skip elements in an array
– The skipped elements are the default value for that type
string[] sArray = new string[4];! // 4-element string array
sArray[0] = "A";!! ! ! // ["A",null,null,null]

9

Array
§ Array elements are both accessed and assigned via

bracket access
sArray[1] = "Bob";! // Assigns "Bob" to the 1st element
print(sArray[1]);! // Prints: "Bob"

§ It's possible to skip elements in an array
– The skipped elements are the default value for that type
string[] sArray = new string[4];! // 4-element string array
sArray[0] = "A";!! ! ! // ["A",null,null,null]
sArray[2] = "C";!! ! ! // ["A",null,"C",null]

9

Array
§ Array elements are both accessed and assigned via

bracket access
sArray[1] = "Bob";! // Assigns "Bob" to the 1st element
print(sArray[1]);! // Prints: "Bob"

§ It's possible to skip elements in an array
– The skipped elements are the default value for that type
string[] sArray = new string[4];! // 4-element string array
sArray[0] = "A";!! ! ! // ["A",null,null,null]
sArray[2] = "C";!! ! ! // ["A",null,"C",null]

§ Arrays have Length instead of Count

9

Array
§ Array elements are both accessed and assigned via

bracket access
sArray[1] = "Bob";! // Assigns "Bob" to the 1st element
print(sArray[1]);! // Prints: "Bob"

§ It's possible to skip elements in an array
– The skipped elements are the default value for that type
string[] sArray = new string[4];! // 4-element string array
sArray[0] = "A";!! ! ! // ["A",null,null,null]
sArray[2] = "C";!! ! ! // ["A",null,"C",null]

§ Arrays have Length instead of Count
print(sArray.Length);! ! // Prints: 4

9

Array
§ Array elements are both accessed and assigned via

bracket access
sArray[1] = "Bob";! // Assigns "Bob" to the 1st element
print(sArray[1]);! // Prints: "Bob"

§ It's possible to skip elements in an array
– The skipped elements are the default value for that type
string[] sArray = new string[4];! // 4-element string array
sArray[0] = "A";!! ! ! // ["A",null,null,null]
sArray[2] = "C";!! ! ! // ["A",null,"C",null]

§ Arrays have Length instead of Count
print(sArray.Length);! ! // Prints: 4
– This is similar to strings (which are collections of chars)

9

Array

10

Array
§ All these methods act on the array ["A","B","C","D"]

10

Array
§ All these methods act on the array ["A","B","C","D"]

print(sArray[0]);! ! // Prints: "A"

10

Array
§ All these methods act on the array ["A","B","C","D"]

print(sArray[0]);! ! // Prints: "A"
sArray[2] = "Cow";! ! // ["A","B","Cow","D"]

10

Array
§ All these methods act on the array ["A","B","C","D"]

print(sArray[0]);! ! // Prints: "A"
sArray[2] = "Cow";! ! // ["A","B","Cow","D"]
sArray[10] = "Test";! ! // ERROR!!! Index out of range

10

Array
§ All these methods act on the array ["A","B","C","D"]

print(sArray[0]);! ! // Prints: "A"
sArray[2] = "Cow";! ! // ["A","B","Cow","D"]
sArray[10] = "Test";! ! // ERROR!!! Index out of range
sList.Remove("C");! ! // ["A","B","D"]

10

Array
§ All these methods act on the array ["A","B","C","D"]

print(sArray[0]);! ! // Prints: "A"
sArray[2] = "Cow";! ! // ["A","B","Cow","D"]
sArray[10] = "Test";! ! // ERROR!!! Index out of range
sList.Remove("C");! ! // ["A","B","D"]
sList.RemoveAt(1);! ! // ["A","C","D"]

10

Array
§ All these methods act on the array ["A","B","C","D"]

print(sArray[0]);! ! // Prints: "A"
sArray[2] = "Cow";! ! // ["A","B","Cow","D"]
sArray[10] = "Test";! ! // ERROR!!! Index out of range
sList.Remove("C");! ! // ["A","B","D"]
sList.RemoveAt(1);! ! // ["A","C","D"]

§ Static methods of the System.Array class

10

Array
§ All these methods act on the array ["A","B","C","D"]

print(sArray[0]);! ! // Prints: "A"
sArray[2] = "Cow";! ! // ["A","B","Cow","D"]
sArray[10] = "Test";! ! // ERROR!!! Index out of range
sList.Remove("C");! ! // ["A","B","D"]
sList.RemoveAt(1);! ! // ["A","C","D"]

§ Static methods of the System.Array class
print(System.Array.IndexOf(sArray,"B"));!// 1

10

Array
§ All these methods act on the array ["A","B","C","D"]

print(sArray[0]);! ! // Prints: "A"
sArray[2] = "Cow";! ! // ["A","B","Cow","D"]
sArray[10] = "Test";! ! // ERROR!!! Index out of range
sList.Remove("C");! ! // ["A","B","D"]
sList.RemoveAt(1);! ! // ["A","C","D"]

§ Static methods of the System.Array class
print(System.Array.IndexOf(sArray,"B"));!// 1
System.Array.Resize(ref sArray, 6); // Sets Length to 6

10

Array
§ All these methods act on the array ["A","B","C","D"]

print(sArray[0]);! ! // Prints: "A"
sArray[2] = "Cow";! ! // ["A","B","Cow","D"]
sArray[10] = "Test";! ! // ERROR!!! Index out of range
sList.Remove("C");! ! // ["A","B","D"]
sList.RemoveAt(1);! ! // ["A","C","D"]

§ Static methods of the System.Array class
print(System.Array.IndexOf(sArray,"B"));!// 1
System.Array.Resize(ref sArray, 6); // Sets Length to 6

§ Arrays can be converted to Lists

10

Array
§ All these methods act on the array ["A","B","C","D"]

print(sArray[0]);! ! // Prints: "A"
sArray[2] = "Cow";! ! // ["A","B","Cow","D"]
sArray[10] = "Test";! ! // ERROR!!! Index out of range
sList.Remove("C");! ! // ["A","B","D"]
sList.RemoveAt(1);! ! // ["A","C","D"]

§ Static methods of the System.Array class
print(System.Array.IndexOf(sArray,"B"));!// 1
System.Array.Resize(ref sArray, 6); // Sets Length to 6

§ Arrays can be converted to Lists
List<string> sList = new List<string>(sArray);

10

Multidimensional Arrays

11

Multidimensional Arrays
§ Arrays can have more than one dimension

11

Multidimensional Arrays
§ Arrays can have more than one dimension

string[,] s2D = new string[4,4];! // Makes a 4x4 array
s2D[0,0] = "A";
s2D[0,3] = "B";
s2D[1,2] = "C";
s2D[3,1] = "D";

11

Multidimensional Arrays
§ Arrays can have more than one dimension

string[,] s2D = new string[4,4];! // Makes a 4x4 array
s2D[0,0] = "A";
s2D[0,3] = "B";
s2D[1,2] = "C";
s2D[3,1] = "D";

– This would make the 2-dimensional array

11

Multidimensional Arrays
§ Arrays can have more than one dimension

string[,] s2D = new string[4,4];! // Makes a 4x4 array
s2D[0,0] = "A";
s2D[0,3] = "B";
s2D[1,2] = "C";
s2D[3,1] = "D";

– This would make the 2-dimensional array
A			B
		C	
D			

11

Multidimensional Arrays
§ Arrays can have more than one dimension

string[,] s2D = new string[4,4];! // Makes a 4x4 array
s2D[0,0] = "A";
s2D[0,3] = "B";
s2D[1,2] = "C";
s2D[3,1] = "D";

– This would make the 2-dimensional array
A			B
		C	
D			

– Length is still the total length of the array

11

Multidimensional Arrays
§ Arrays can have more than one dimension

string[,] s2D = new string[4,4];! // Makes a 4x4 array
s2D[0,0] = "A";
s2D[0,3] = "B";
s2D[1,2] = "C";
s2D[3,1] = "D";

– This would make the 2-dimensional array
A			B
		C	
D			

– Length is still the total length of the array
print(s2D.Length);! // Prints: 16

11

Multidimensional Arrays

12

Multidimensional Arrays
string str = "";
for (int i=0; i<4; i++) {
 for (int j=0; j<4; j++) {
 if (s2D[i,j] != null) {
 str += "|" + s2D[i,j];
 } else {
 str += "|_";
 }
 }
 str += "|"+"\n";
}
print(str);

12

Multidimensional Arrays
string str = "";
for (int i=0; i<4; i++) {
 for (int j=0; j<4; j++) {
 if (s2D[i,j] != null) {
 str += "|" + s2D[i,j];
 } else {
 str += "|_";
 }
 }
 str += "|"+"\n";
}
print(str);

– This prints:

12

Multidimensional Arrays
string str = "";
for (int i=0; i<4; i++) {
 for (int j=0; j<4; j++) {
 if (s2D[i,j] != null) {
 str += "|" + s2D[i,j];
 } else {
 str += "|_";
 }
 }
 str += "|"+"\n";
}
print(str);

– This prints:
A	_	_	B
_	_	C	_
_	_	_	_
D	_	_	_

12

Jagged Lists & Arrays

13

Jagged Lists & Arrays
§ Both Lists and arrays can be composed of other

Lists or arrays

13

Jagged Lists & Arrays
§ Both Lists and arrays can be composed of other

Lists or arrays
string[][] jArray = new string[3][]; // Makes a 3x? array

13

Jagged Lists & Arrays
§ Both Lists and arrays can be composed of other

Lists or arrays
string[][] jArray = new string[3][]; // Makes a 3x? array
jArray[0] = new string[4];
jArray[0][0] = "A";
jArray[0][3] = "B";

13

Jagged Lists & Arrays
§ Both Lists and arrays can be composed of other

Lists or arrays
string[][] jArray = new string[3][]; // Makes a 3x? array
jArray[0] = new string[4];
jArray[0][0] = "A";
jArray[0][3] = "B";
jArray[1] = new string[] {"C","D","E"};
jArray[2] = new string[] {"F","G"};

13

Jagged Lists & Arrays
§ Both Lists and arrays can be composed of other

Lists or arrays
string[][] jArray = new string[3][]; // Makes a 3x? array
jArray[0] = new string[4];
jArray[0][0] = "A";
jArray[0][3] = "B";
jArray[1] = new string[] {"C","D","E"};
jArray[2] = new string[] {"F","G"};

– This would make the jagged array

13

Jagged Lists & Arrays
§ Both Lists and arrays can be composed of other

Lists or arrays
string[][] jArray = new string[3][]; // Makes a 3x? array
jArray[0] = new string[4];
jArray[0][0] = "A";
jArray[0][3] = "B";
jArray[1] = new string[] {"C","D","E"};
jArray[2] = new string[] {"F","G"};

– This would make the jagged array
A			B
C	D	E	
F	G		

13

Jagged Lists & Arrays
§ Both Lists and arrays can be composed of other

Lists or arrays
string[][] jArray = new string[3][]; // Makes a 3x? array
jArray[0] = new string[4];
jArray[0][0] = "A";
jArray[0][3] = "B";
jArray[1] = new string[] {"C","D","E"};
jArray[2] = new string[] {"F","G"};

– This would make the jagged array
A			B
C	D	E	
F	G		

– Length is now accurate for each part of the jagged array

13

Jagged Lists & Arrays
§ Both Lists and arrays can be composed of other

Lists or arrays
string[][] jArray = new string[3][]; // Makes a 3x? array
jArray[0] = new string[4];
jArray[0][0] = "A";
jArray[0][3] = "B";
jArray[1] = new string[] {"C","D","E"};
jArray[2] = new string[] {"F","G"};

– This would make the jagged array
A			B
C	D	E	
F	G		

– Length is now accurate for each part of the jagged array
print(jArray.Length);! ! // Prints: 4
print(jArray[1].Length);! // Prints: 3

13

foreach and Collections

14

foreach and Collections

§ Lists and arrays can be iterated over using foreach

14

foreach and Collections

§ Lists and arrays can be iterated over using foreach
string[] sArray = new string[] {"A","B","C","D"};

14

foreach and Collections

§ Lists and arrays can be iterated over using foreach
string[] sArray = new string[] {"A","B","C","D"};
string str = "";
foreach (string s in sArray) {
 str += s;
}
print(s);! ! ! ! // Prints: "ABCD"

14

foreach and Collections

§ Lists and arrays can be iterated over using foreach
string[] sArray = new string[] {"A","B","C","D"};
string str = "";
foreach (string s in sArray) {
 str += s;
}
print(s);! ! ! ! // Prints: "ABCD"

List<string> sList = new List<string>(sArray);

14

foreach and Collections

§ Lists and arrays can be iterated over using foreach
string[] sArray = new string[] {"A","B","C","D"};
string str = "";
foreach (string s in sArray) {
 str += s;
}
print(s);! ! ! ! // Prints: "ABCD"

List<string> sList = new List<string>(sArray);
string str2 = "";
foreach (string s in sList) {
 str2 += s;
}
print(s2);! ! ! ! // Prints: "ABCD"

14

foreach and Collections

§ Lists and arrays can be iterated over using foreach
string[] sArray = new string[] {"A","B","C","D"};
string str = "";
foreach (string s in sArray) {
 str += s;
}
print(s);! ! ! ! // Prints: "ABCD"

List<string> sList = new List<string>(sArray);
string str2 = "";
foreach (string s in sList) {
 str2 += s;
}
print(s2);! ! ! ! // Prints: "ABCD"

§ Why can string s be declared twice?

14

foreach and Collections

§ Lists and arrays can be iterated over using foreach
string[] sArray = new string[] {"A","B","C","D"};
string str = "";
foreach (string s in sArray) {
 str += s;
}
print(s);! ! ! ! // Prints: "ABCD"

List<string> sList = new List<string>(sArray);
string str2 = "";
foreach (string s in sList) {
 str2 += s;
}
print(s2);! ! ! ! // Prints: "ABCD"

§ Why can string s be declared twice?
– Because string s is local to each foreach loop

14

When to Use List or Array

15

When to Use List or Array
§ Each have pros and cons:

15

When to Use List or Array
§ Each have pros and cons:

– List has flexible length, whereas array length is more
difficult to change.

15

When to Use List or Array
§ Each have pros and cons:

– List has flexible length, whereas array length is more
difficult to change.

– Array is very slightly faster.

15

When to Use List or Array
§ Each have pros and cons:

– List has flexible length, whereas array length is more
difficult to change.

– Array is very slightly faster.
– Array allows multidimensional indices.

15

When to Use List or Array
§ Each have pros and cons:

– List has flexible length, whereas array length is more
difficult to change.

– Array is very slightly faster.
– Array allows multidimensional indices.
– Array allows empty elements in the middle of the collection.

15

When to Use List or Array
§ Each have pros and cons:

– List has flexible length, whereas array length is more
difficult to change.

– Array is very slightly faster.
– Array allows multidimensional indices.
– Array allows empty elements in the middle of the collection.

§ Because they are simpler to implement and take less
forethought (due to their flexible length), the author
tends to use Lists much more often than arrays.

15

When to Use List or Array
§ Each have pros and cons:

– List has flexible length, whereas array length is more
difficult to change.

– Array is very slightly faster.
– Array allows multidimensional indices.
– Array allows empty elements in the middle of the collection.

§ Because they are simpler to implement and take less
forethought (due to their flexible length), the author
tends to use Lists much more often than arrays.

– This is especially true when prototyping games, since
prototyping requires a lot of flexibility.

15

Other Collection Types

16

Other Collection Types
§ ArrayList

16

Other Collection Types
§ ArrayList

– ArrayList is like a List except without a set type

16

Other Collection Types
§ ArrayList

– ArrayList is like a List except without a set type
– Extremely flexible, but I find them less useful and slower

16

Other Collection Types
§ ArrayList

– ArrayList is like a List except without a set type
– Extremely flexible, but I find them less useful and slower

§ Dictionary<key,value>

16

Other Collection Types
§ ArrayList

– ArrayList is like a List except without a set type
– Extremely flexible, but I find them less useful and slower

§ Dictionary<key,value>
– A key / value pair

16

Other Collection Types
§ ArrayList

– ArrayList is like a List except without a set type
– Extremely flexible, but I find them less useful and slower

§ Dictionary<key,value>
– A key / value pair

• The key could be a string, like a username

16

Other Collection Types
§ ArrayList

– ArrayList is like a List except without a set type
– Extremely flexible, but I find them less useful and slower

§ Dictionary<key,value>
– A key / value pair

• The key could be a string, like a username
• The value would be the user data

16

Other Collection Types
§ ArrayList

– ArrayList is like a List except without a set type
– Extremely flexible, but I find them less useful and slower

§ Dictionary<key,value>
– A key / value pair

• The key could be a string, like a username
• The value would be the user data

– Used in some of the later tutorials in the book

16

Other Collection Types
§ ArrayList

– ArrayList is like a List except without a set type
– Extremely flexible, but I find them less useful and slower

§ Dictionary<key,value>
– A key / value pair

• The key could be a string, like a username
• The value would be the user data

– Used in some of the later tutorials in the book
– Requires using System.Collections.Generic;

16

Other Collection Types
§ ArrayList

– ArrayList is like a List except without a set type
– Extremely flexible, but I find them less useful and slower

§ Dictionary<key,value>
– A key / value pair

• The key could be a string, like a username
• The value would be the user data

– Used in some of the later tutorials in the book
– Requires using System.Collections.Generic;
– Very useful

16

Other Collection Types
§ ArrayList

– ArrayList is like a List except without a set type
– Extremely flexible, but I find them less useful and slower

§ Dictionary<key,value>
– A key / value pair

• The key could be a string, like a username
• The value would be the user data

– Used in some of the later tutorials in the book
– Requires using System.Collections.Generic;
– Very useful
– But don't appear properly in the Unity Inspector

16

Chapter 22 – Summary

17

Chapter 22 – Summary
§ The collections we use in this book can hold any

number of objects (of a single type)

17

Chapter 22 – Summary
§ The collections we use in this book can hold any

number of objects (of a single type)
§ List is the most easily usable collection type

17

Chapter 22 – Summary
§ The collections we use in this book can hold any

number of objects (of a single type)
§ List is the most easily usable collection type

– It requires using System.Collections.Generic;

17

Chapter 22 – Summary
§ The collections we use in this book can hold any

number of objects (of a single type)
§ List is the most easily usable collection type

– It requires using System.Collections.Generic;

§ Arrays are less flexible but also very useful

17

Chapter 22 – Summary
§ The collections we use in this book can hold any

number of objects (of a single type)
§ List is the most easily usable collection type

– It requires using System.Collections.Generic;

§ Arrays are less flexible but also very useful
– Only arrays can be multidimensional

17

Chapter 22 – Summary
§ The collections we use in this book can hold any

number of objects (of a single type)
§ List is the most easily usable collection type

– It requires using System.Collections.Generic;

§ Arrays are less flexible but also very useful
– Only arrays can be multidimensional

§ Both Lists and arrays can be jagged

17

Chapter 22 – Summary
§ The collections we use in this book can hold any

number of objects (of a single type)
§ List is the most easily usable collection type

– It requires using System.Collections.Generic;

§ Arrays are less flexible but also very useful
– Only arrays can be multidimensional

§ Both Lists and arrays can be jagged
§ I generally recommend Lists over arrays

17

Chapter 22 – Summary
§ The collections we use in this book can hold any

number of objects (of a single type)
§ List is the most easily usable collection type

– It requires using System.Collections.Generic;

§ Arrays are less flexible but also very useful
– Only arrays can be multidimensional

§ Both Lists and arrays can be jagged
§ I generally recommend Lists over arrays
§ Dictionaries will also be used in this book

17

Chapter 22 – Summary
§ The collections we use in this book can hold any

number of objects (of a single type)
§ List is the most easily usable collection type

– It requires using System.Collections.Generic;

§ Arrays are less flexible but also very useful
– Only arrays can be multidimensional

§ Both Lists and arrays can be jagged
§ I generally recommend Lists over arrays
§ Dictionaries will also be used in this book
§ Next Chapter: Functions!

17

