
LOOPS

CHAPTER 21

1

Topics

2

Topics
§ Four Types of Loops

2

Topics
§ Four Types of Loops

– while

2

Topics
§ Four Types of Loops

– while

– do…while

2

Topics
§ Four Types of Loops

– while

– do…while

– for

2

Topics
§ Four Types of Loops

– while

– do…while

– for

– foreach

2

Topics
§ Four Types of Loops

– while

– do…while

– for

– foreach

§ Jump Statements in Loops

2

Topics
§ Four Types of Loops

– while

– do…while

– for

– foreach

§ Jump Statements in Loops
– break

2

Topics
§ Four Types of Loops

– while

– do…while

– for

– foreach

§ Jump Statements in Loops
– break

– continue

2

Four Types of Loops

3

Four Types of Loops
§ while

3

Four Types of Loops
§ while

– The most basic loop

3

Four Types of Loops
§ while

– The most basic loop
– Checks a condition before each loop; loops if it's true

3

Four Types of Loops
§ while

– The most basic loop
– Checks a condition before each loop; loops if it's true

§ do…while

3

Four Types of Loops
§ while

– The most basic loop
– Checks a condition before each loop; loops if it's true

§ do…while

– Checks a condition after each loop; loops if it's true

3

Four Types of Loops
§ while

– The most basic loop
– Checks a condition before each loop; loops if it's true

§ do…while

– Checks a condition after each loop; loops if it's true

§ for

3

Four Types of Loops
§ while

– The most basic loop
– Checks a condition before each loop; loops if it's true

§ do…while

– Checks a condition after each loop; loops if it's true

§ for

– Most common loop structure

3

Four Types of Loops
§ while

– The most basic loop
– Checks a condition before each loop; loops if it's true

§ do…while

– Checks a condition after each loop; loops if it's true

§ for

– Most common loop structure
– A loop structure that contains three separate statements

3

Four Types of Loops
§ while

– The most basic loop
– Checks a condition before each loop; loops if it's true

§ do…while

– Checks a condition after each loop; loops if it's true

§ for

– Most common loop structure
– A loop structure that contains three separate statements

§ foreach

3

Four Types of Loops
§ while

– The most basic loop
– Checks a condition before each loop; loops if it's true

§ do…while

– Checks a condition after each loop; loops if it's true

§ for

– Most common loop structure
– A loop structure that contains three separate statements

§ foreach

– Automatic for loop for enumerable collections

3

Four Types of Loops

4

Four Types of Loops
§ while

4

Four Types of Loops
§ while

– The most basic loop

4

Four Types of Loops
§ while

– The most basic loop
– Checks a condition before each loop; loops if it's true

4

Four Types of Loops
§ while

– The most basic loop
– Checks a condition before each loop; loops if it's true

while (true) {
 print("Loop");
}

4

Four Types of Loops
§ while

– The most basic loop
– Checks a condition before each loop; loops if it's true

while (true) {
 print("Loop");
}

– This will cause an infinite loop!!!

4

Four Types of Loops
§ while

– The most basic loop
– Checks a condition before each loop; loops if it's true

while (true) {
 print("Loop");
}

– This will cause an infinite loop!!!
– "Loop" will never appear in the Console pane because the

entire Unity process will be frozen

4

Four Types of Loops
§ while

– The most basic loop
– Checks a condition before each loop; loops if it's true

while (true) {
 print("Loop");
}

– This will cause an infinite loop!!!
– "Loop" will never appear in the Console pane because the

entire Unity process will be frozen
– This would necessitate force quitting Unity

4

Four Types of Loops
§ while

– The most basic loop
– Checks a condition before each loop; loops if it's true

while (true) {
 print("Loop");
}

– This will cause an infinite loop!!!
– "Loop" will never appear in the Console pane because the

entire Unity process will be frozen
– This would necessitate force quitting Unity
– On old, single-threaded computers, this would require

turning the computer off!

4

Four Types of Loops

5

Four Types of Loops
§ while – A better while loop

5

Four Types of Loops
§ while – A better while loop

– while loops need an exit condition

5

Four Types of Loops
§ while – A better while loop

– while loops need an exit condition
• A condition that will cause the condition to evaluate to false

5

Four Types of Loops
§ while – A better while loop

– while loops need an exit condition
• A condition that will cause the condition to evaluate to false

– Checks a condition before each loop; loops if it's true

5

Four Types of Loops
§ while – A better while loop

– while loops need an exit condition
• A condition that will cause the condition to evaluate to false

– Checks a condition before each loop; loops if it's true
int i=0;
while (i<3) {
 print("Loop: "+i);
 i++; // Increment operator
}

5

Four Types of Loops
§ while – A better while loop

– while loops need an exit condition
• A condition that will cause the condition to evaluate to false

– Checks a condition before each loop; loops if it's true
int i=0;
while (i<3) {
 print("Loop: "+i);
 i++; // Increment operator
}

– i++ will increment i on every pass through the loop

5

Four Types of Loops
§ while – A better while loop

– while loops need an exit condition
• A condition that will cause the condition to evaluate to false

– Checks a condition before each loop; loops if it's true
int i=0;
while (i<3) {
 print("Loop: "+i);
 i++; // Increment operator
}

– i++ will increment i on every pass through the loop

– When i reaches 3, the conditional clause will evaluate to
false, and the loop will exit

5

Four Types of Loops

6

Four Types of Loops
§ do…while

6

Four Types of Loops
§ do…while

– Like a while loop, but checks after the loop has run

6

Four Types of Loops
§ do…while

– Like a while loop, but checks after the loop has run
• This allows a guarantee that the loop will run at least once

6

Four Types of Loops
§ do…while

– Like a while loop, but checks after the loop has run
• This allows a guarantee that the loop will run at least once

– Checks a condition after each loop; loops if it's true

6

Four Types of Loops
§ do…while

– Like a while loop, but checks after the loop has run
• This allows a guarantee that the loop will run at least once

– Checks a condition after each loop; loops if it's true
int i=5;
do {
 print("Loop: "+i);
 i++; // Increment operator
} while (i<3);

6

Four Types of Loops
§ do…while

– Like a while loop, but checks after the loop has run
• This allows a guarantee that the loop will run at least once

– Checks a condition after each loop; loops if it's true
int i=5;
do {
 print("Loop: "+i);
 i++; // Increment operator
} while (i<3);

– When execute the loop once before checking the conditional
clause and then exiting

6

Four Types of Loops
§ do…while

– Like a while loop, but checks after the loop has run
• This allows a guarantee that the loop will run at least once

– Checks a condition after each loop; loops if it's true
int i=5;
do {
 print("Loop: "+i);
 i++; // Increment operator
} while (i<3);

– When execute the loop once before checking the conditional
clause and then exiting

– Note the semicolon after the while clause

6

Four Types of Loops

7

Four Types of Loops
§ for

7

Four Types of Loops
§ for

– A for loop contains three separate clauses

7

Four Types of Loops
§ for

– A for loop contains three separate clauses
for (int i=0; i<3; i++) {
 print("Loop: "+i);
}

7

Four Types of Loops
§ for

– A for loop contains three separate clauses
for (int i=0; i<3; i++) {
 print("Loop: "+i);
}

– Initialization clause:! int i=0;

7

Four Types of Loops
§ for

– A for loop contains three separate clauses
for (int i=0; i<3; i++) {
 print("Loop: "+i);
}

– Initialization clause:! int i=0;

– Condition clause:! i<3;

7

Four Types of Loops
§ for

– A for loop contains three separate clauses
for (int i=0; i<3; i++) {
 print("Loop: "+i);
}

– Initialization clause:! int i=0;

– Condition clause:! i<3;

– Iteration clause:!! i++

7

Four Types of Loops
§ for

– A for loop contains three separate clauses
for (int i=0; i<3; i++) {
 print("Loop: "+i);
}

– Initialization clause:! int i=0;

– Condition clause:! i<3;

– Iteration clause:!! i++

– The i variable only exists within the for loop

7

Four Types of Loops
§ for

– A for loop contains three separate clauses
for (int i=0; i<3; i++) {
 print("Loop: "+i);
}

– Initialization clause:! int i=0;

– Condition clause:! i<3;

– Iteration clause:!! i++

– The i variable only exists within the for loop
• It is scoped to the for loop

7

Four Types of Loops
§ for

– A for loop contains three separate clauses
for (int i=0; i<3; i++) {
 print("Loop: "+i);
}

– Initialization clause:! int i=0;

– Condition clause:! i<3;

– Iteration clause:!! i++

– The i variable only exists within the for loop
• It is scoped to the for loop

– The iteration clause doesn't have to be ++

7

Four Types of Loops
§ for

– A for loop contains three separate clauses
for (int i=0; i<3; i++) {
 print("Loop: "+i);
}

– Initialization clause:! int i=0;

– Condition clause:! i<3;

– Iteration clause:!! i++

– The i variable only exists within the for loop
• It is scoped to the for loop

– The iteration clause doesn't have to be ++
• i-- is another common option for counting down instead of up

7

Four Types of Loops

8

Four Types of Loops
§ foreach

8

Four Types of Loops
§ foreach

– Automatically loops for each element in a collection

8

Four Types of Loops
§ foreach

– Automatically loops for each element in a collection
string str = "Hello";
foreach (char chr in str) {
 print(chr);
}

8

Four Types of Loops
§ foreach

– Automatically loops for each element in a collection
string str = "Hello";
foreach (char chr in str) {
 print(chr);
}

– This will print each character of Hello individually

8

Four Types of Loops
§ foreach

– Automatically loops for each element in a collection
string str = "Hello";
foreach (char chr in str) {
 print(chr);
}

– This will print each character of Hello individually

– foreach will be used extensively in the following chapter

8

Jump Statements Within Loops

9

Jump Statements Within Loops
§ Jump statements change the execution of a loop

9

Jump Statements Within Loops
§ Jump statements change the execution of a loop

– break

9

Jump Statements Within Loops
§ Jump statements change the execution of a loop

– break

• Breaks out of the loop entirely

9

Jump Statements Within Loops
§ Jump statements change the execution of a loop

– break

• Breaks out of the loop entirely

– continue

9

Jump Statements Within Loops
§ Jump statements change the execution of a loop

– break

• Breaks out of the loop entirely

– continue

• Breaks out of this iteration of the loop and moves on to the next

9

Jump Statements Within Loops

10

Jump Statements Within Loops
§ break

10

Jump Statements Within Loops
§ break

– Breaks out of the loop completely

10

Jump Statements Within Loops
§ break

– Breaks out of the loop completely
string str = "Hello";
foreach (char chr in str) {
 if (chr == 'l') {

10

Jump Statements Within Loops
§ break

– Breaks out of the loop completely
string str = "Hello";
foreach (char chr in str) {
 if (chr == 'l') {

 break;

10

Jump Statements Within Loops
§ break

– Breaks out of the loop completely
string str = "Hello";
foreach (char chr in str) {
 if (chr == 'l') {

 break;

 }
 print(chr);
}

10

Jump Statements Within Loops
§ break

– Breaks out of the loop completely
string str = "Hello";
foreach (char chr in str) {
 if (chr == 'l') {

 break;

 }
 print(chr);
}

– This will print:

10

Jump Statements Within Loops
§ break

– Breaks out of the loop completely
string str = "Hello";
foreach (char chr in str) {
 if (chr == 'l') {

 break;

 }
 print(chr);
}

– This will print:
H
e

10

Jump Statements Within Loops
§ break

– Breaks out of the loop completely
string str = "Hello";
foreach (char chr in str) {
 if (chr == 'l') {

 break;

 }
 print(chr);
}

– This will print:
H
e

– Once chr becomes 'l', it will break out of the loop

10

Jump Statements Within Loops
§ break

– Breaks out of the loop completely
string str = "Hello";
foreach (char chr in str) {
 if (chr == 'l') {

 break;

 }
 print(chr);
}

– This will print:
H
e

– Once chr becomes 'l', it will break out of the loop
– Can be used on any kind of loop

10

Jump Statements Within Loops

11

Jump Statements Within Loops
§ continue

11

Jump Statements Within Loops
§ continue

– Breaks out of the loop completely

11

Jump Statements Within Loops
§ continue

– Breaks out of the loop completely
string str = "Hello";
foreach (char chr in str) {
 if (chr == 'l') {

11

Jump Statements Within Loops
§ continue

– Breaks out of the loop completely
string str = "Hello";
foreach (char chr in str) {
 if (chr == 'l') {

 continue;

11

Jump Statements Within Loops
§ continue

– Breaks out of the loop completely
string str = "Hello";
foreach (char chr in str) {
 if (chr == 'l') {

 continue;

 }
 print(chr);
}

11

Jump Statements Within Loops
§ continue

– Breaks out of the loop completely
string str = "Hello";
foreach (char chr in str) {
 if (chr == 'l') {

 continue;

 }
 print(chr);
}

– This will print:

11

Jump Statements Within Loops
§ continue

– Breaks out of the loop completely
string str = "Hello";
foreach (char chr in str) {
 if (chr == 'l') {

 continue;

 }
 print(chr);
}

– This will print:
H
e
o

11

Jump Statements Within Loops
§ continue

– Breaks out of the loop completely
string str = "Hello";
foreach (char chr in str) {
 if (chr == 'l') {

 continue;

 }
 print(chr);
}

– This will print:
H
e
o

– When chr is 'l', the loop continues without printing

11

Chapter 21 – Summary

12

Chapter 21 – Summary
§ Of the four types of loops:

12

Chapter 21 – Summary
§ Of the four types of loops:

– while and do…while are somewhat dangerous

12

Chapter 21 – Summary
§ Of the four types of loops:

– while and do…while are somewhat dangerous
– for is by far the most common and is very flexible

12

Chapter 21 – Summary
§ Of the four types of loops:

– while and do…while are somewhat dangerous
– for is by far the most common and is very flexible
– foreach is very useful for strings, arrays, and Lists

12

Chapter 21 – Summary
§ Of the four types of loops:

– while and do…while are somewhat dangerous
– for is by far the most common and is very flexible
– foreach is very useful for strings, arrays, and Lists

•We'll talk about it a lot more in Chapter 22

12

Chapter 21 – Summary
§ Of the four types of loops:

– while and do…while are somewhat dangerous
– for is by far the most common and is very flexible
– foreach is very useful for strings, arrays, and Lists

•We'll talk about it a lot more in Chapter 22

§ Jump statements can be used to have more control
over your loops

12

Chapter 21 – Summary
§ Of the four types of loops:

– while and do…while are somewhat dangerous
– for is by far the most common and is very flexible
– foreach is very useful for strings, arrays, and Lists

•We'll talk about it a lot more in Chapter 22

§ Jump statements can be used to have more control
over your loops

– A break can be used to break out of an infinite loop as well

12

Chapter 21 – Summary
§ Of the four types of loops:

– while and do…while are somewhat dangerous
– for is by far the most common and is very flexible
– foreach is very useful for strings, arrays, and Lists

•We'll talk about it a lot more in Chapter 22

§ Jump statements can be used to have more control
over your loops

– A break can be used to break out of an infinite loop as well

§ Chapter 22 will cover arrays and Lists, two kinds of
collections in C#

12

