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§ while

– The most basic loop
– Checks a condition before each loop; loops if it's true

while (true) {         
    print( "Loop" );   
}                      

– This will cause an infinite loop!!!
– "Loop" will never appear in the Console pane because the 

entire Unity process will be frozen
– This would necessitate force quitting Unity
– On old, single-threaded computers, this would require 

turning the computer off!
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§ while – A better while loop

– while loops need an exit condition
• A condition that will cause the condition to evaluate to false

– Checks a condition before each loop; loops if it's true
int i=0;
while ( i<3 ) {
    print( "Loop: "+i );
    i++;      // Increment operator
}                     

– i++ will increment i on every pass through the loop

– When i reaches 3, the conditional clause will evaluate to 
false, and the loop will exit
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§ do…while

– Like a while loop, but checks after the loop has run
• This allows a guarantee that the loop will run at least once

– Checks a condition after each loop; loops if it's true
int i=5;
do {
    print( "Loop: "+i );
    i++;      // Increment operator
} while (i<3);                    

– When execute the loop once before checking the conditional 
clause and then exiting

– Note the semicolon after the while clause
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§ for

– A for loop contains three separate clauses
for (int i=0; i<3; i++) {
    print( "Loop: "+i );
}

– Initialization clause:! int i=0;

– Condition clause:! i<3;

– Iteration clause:!! i++

– The i variable only exists within the for loop
• It is scoped to the for loop

– The iteration clause doesn't have to be ++
• i-- is another common option for counting down instead of up
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– Automatically loops for each element in a collection
string str = "Hello";
foreach (char chr in str) {
    print( chr );
}

– This will print each character of Hello individually

– foreach will be used extensively in the following chapter
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– break

• Breaks out of the loop entirely

– continue

• Breaks out of this iteration of the loop and moves on to the next
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– Breaks out of the loop completely
string str = "Hello";
foreach (char chr in str) {
    if (chr == 'l') {

        break;

    }
    print( chr );
}

– This will print:
H
e

– Once chr becomes 'l', it will break out of the loop
– Can be used on any kind of loop
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– Breaks out of the loop completely
string str = "Hello";
foreach (char chr in str) {
    if (chr == 'l') {

        continue;

    }
    print( chr );
}

– This will print:
H
e
o

– When chr is 'l', the loop continues without printing
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§ Of the four types of loops:

– while and do…while are somewhat dangerous
– for is by far the most common and is very flexible
– foreach is very useful for strings, arrays, and Lists

•We'll talk about it a lot more in Chapter 22

§ Jump statements can be used to have more control 
over your loops

– A break can be used to break out of an infinite loop as well

§ Chapter 22 will cover arrays and Lists, two kinds of 
collections in C#

12


