
A p p e n d i x B

USEFUL CONCEPTS

This appendix is full—like completely chock

full—of concepts that will help you be a

better and more effective prototyper and

programmer. Some of these are code concepts,

whereas others are methodologies. These are

collected here in an appendix to make them

easier for you to reference later when you look

back at this book in the coming years.

Z02_Bond_App-B_p001-102.indd 1 10/06/22 8:55 PM

2	 Appendix B  Useful Concepts

Topics Covered
This appendix covers several different topics, categorized into four distinct groups.
Many of these include Unity code examples, and others point you to specific parts of
the book where the concept is used.

■■ C# and Unity Coding Concepts...3

■■ Attributes...3

■■ Automatic Properties..6

■■ Bitwise Boolean Operators and Layer Masks...6

■■ Coroutines...9

■■ Delegates, Events, and UnityEvents.. 11

■■ Enums.. 14

■■ Extension Methods... 15

■■ Interfaces.. 16

■■ JSON (JavaScript Object Notation) in Unity... 24

■■ Lambda Expressions =>..27

■■ Naming Conventions...29

■■ Object-Oriented Software Design Patterns..30

■■ Component Pattern..30

■■ Observer Pattern... 31

■■ Singleton Pattern..36

■■ Strategy Pattern... 37

■■ More Information on Design Patterns in Game Programming.......................39

■■ Operator Precedence and Order of Operations...39

■■ Race Conditions...40

■■ Recursive Functions..43

■■ String Interpolation – $""..43

■■ StringBuilder..45

■■ Structs..48

■■ Unity Messages Beyond Start() and Update()...48

■■ Variable Scope..52

■■ XML...56

■■ XML Documentation in C#...58

Z02_Bond_App-B_p001-102.indd 2 10/06/22 8:55 PM

	 C# and Unity Coding Concepts	 3

■■ Math Concepts..60

■■ Cosine and Sine (Cos and Sin)..60

■■ Dice Probability Enumeration...64

■■ Dot Product..70

■■ Interpolation..72

■■ Linear Interpolation...73

■■ Time-Based Linear Interpolations..73

■■ Linear Interpolations Using Zeno's Paradox... 75

■■ Interpolating More Than Just Position...77

■■ Linear Extrapolation..79

■■ Easing for Linear Interpolations...80

■■ Bézier Curves..85

■■ Three-Point and Four-Point Bézier Curves..85

■■ A Recursive Bézier Curve Function...88

■■ A Data-Oriented Bézier Function...94

■■ Pen-and-Paper Roleplaying Games..97

■■ Tips for Running a Good Roleplaying Campaign..98

■■ User Interface Concepts...99

■■ Complex Game Controller Input..99

■■ Input Manager Mapping for Various Controllers... 100

■■ Right-Click on macOS... 101

C# and Unity Coding Concepts
This section covers elements of C# coding that you might want to look back at for a
refresher after you've finished the book. There are also some concepts here that, though
important, didn't fit well into one of the regular chapters.

Attributes
You've seen some Attributes (like [Header("Inscribed")]) several times in this book, but
there are many other useful ones that you may not have encountered yet. All of these Attri-
butes are applied to the next thing object or field in code (e.g., [RequireComponent(…)]
on line // b applies to the class AttributesEx, and [Space(32)] and [Range(0,1)] both
apply to the between0and1 field. It does not matter whether or not the Attribute is on the
same line as the field. Figure B.1 and Code Listing B.1 together show the Attributes I use
most frequently.

Z02_Bond_App-B_p001-102.indd 3 10/06/22 8:55 PM

4	 Appendix B  Useful Concepts

Figure B.1  The effects of the AttributesEx Attributes shown in the Unity Inspector

Code Listing B.1  Attribute Examples

> using UnityEngine;	 // a
|
> [RequireComponent(typeof(Rigidbody))]	 // b
> public class AttributesEx : MonoBehaviour {
> [Header("Inscribed")]	 // c
> [SerializeField] private int  inspectorCanEditThis;	 // d
> [HideInInspector] public int  inspectorCanNotSeeThis; // Not Shown!	 // e
>
> [System.Flags] public enum eType { none=0, a=1, b=2, c=4, ac=5 };	 // f
> public eType typeFlags;	 // f
>
> [Space(150)] // 150 pixels of spacing before between0and1.	 // g
> [Range(0, 1)]  public float between0and1 = 0.5f;	 // h
> public SerializedCustomClass serializedCustomClass;	 // i
> public SerializedCustomStruct serializedCustomStruct;	 // j
> }
|
> [System.Serializable] public class SerializedCustomClass {	 // i
> public int integer;
> [Tooltip("This pops up if you hover your mouse over the vec3 field.")]	 // k
> public Vector3 vec3;
> }
|
> [System.Serializable] public struct SerializedCustomStruct {	 // j
> public int integer;

Z02_Bond_App-B_p001-102.indd 4 10/06/22 8:55 PM

	 C# and Unity Coding Concepts	 5

> [Tooltip("This pops up if you hover your mouse over the vec3 field.")]	 // k
> public Vector3 vec3;
> }

a.	 All of these Attributes require using UnityEngine; to work.

b.	 [RequireComponent(typeof(Rigidbody))] tells Unity that this
MonoBehaviour subclass requires another to also be attached (here,
AttributesEx requires Rigidbody). When you attach this script to a
GameObject, a Rigidbody will automatically also be attached.

c.	 [Header("Inscribed")] creates a visible header in the Inspector to
separate values.

d.	 [SerializeField] causes Unity to make this field visible and editable in the
Inspector, even though it is a private field.

e.	 [HideInInspector] causes Unity to hide this field from the Inspector, even
though it is public (Note: The field is still serialized; it's just not visible or
editable in the Inspector).

f.	 [System.Flags] allows you to create an enum that works like a bitmask. As
long as each of the enum values are powers of two (e.g., a, b, and c in eType),
multiple values can be true at the same time. You can also create combination
values like ac=5, which is equal to the sum of a and c, causing both a and c to
be true when typeFlags is set to ac. In Unity, the [System.Flags] attribute
shows check marks next to the selected bits as well as None and Everything
(which select none or all of the enum values, respectively); see Figure B.1. Unity
uses [System.Flags] for its LayerMasks (which are covered in the "Bitwise
Boolean Operators and Layer Masks" section). There is also a good example of
using the [System.Flags] attribute in Code Listing 31.8 of Chapter 31, "Space
SHMUP — Part 1."

g.	 [Space(150)] creates a 150-pixel gap in the Inspector before the
between0and1 field.

h.	 [Range(0,1)] creates a slider in the Inspector for setting between0and1 to any
number between 0 and 1 (inclusive). The field can still be set outside this range
in code.

i.	 [System.Serializable] makes the fields of a custom class able to be serial-
ized by Unity, which allows the Inspector to show and edit the fields (and also
allows the class and its fields to be converted back and forth to JSON using
JSONUtil). Any non-serializable fields (e.g., custom classes that don't have the
[System.Serializable] Attribute) will not be serialized.

j.	 [System.Serializable] also works on custom structs.

k.	 [Tooltip("Tip")] causes the "Tip" to appear if the mouse is hovered over
this field in the Inspector for a couple seconds. I put it here to show that it works
on serialized fields of custom classes and structs.

Z02_Bond_App-B_p001-102.indd 5 10/06/22 8:55 PM

6	 Appendix B  Useful Concepts

Figure B.1 shows the effects of several of the Attributes in the Unity Inspector win-
dow (the [HideInInspector] Attribute is not shown, because it's hidden from the
Inspector).

Automatic Properties
You've used regular properties—functions that masquerade as fields—throughout this
book, but I only introduced automatic properties in some later projects. An automatic
property is one that is automatically created by C# when compiling your code without
your explicitly specifying a backing variable, and they're extremely simple to implement.

Code Listing B.2  Automatic Property Examples

| public class AutomaticPropertiesEx : MonoBehaviour {
> public int intPublicGetSet { get; set; }	 // a
> public int intPrivateSet { get; private set; }	 // b
> public int intPrivateGet { private get; set; }	 // c
| }

a.	 A standard automatic property has both a get and set clause.

b.	 I will frequently use automatic properties with a private set clause like this.
This way, any member of the AutomaticPropertiesEx class can set
intGetOnly, but code from other classes can only get the value.

c.	 I've not yet had a use for an automatic property with a private get clause and
public set clause, but you could think of it as a drop box; any other code can
set this value, but only the AutomaticPropertiesEx class can get it.

You cannot create a property where one clause is automatic but the other has custom
code, and as with all properties, automatic properties are not shown in the Unity
inspector. That being said, I still find these useful for creating values with limited access
and most frequently use the all-public version (// a) and the private set version
(// b) in my code.

Bitwise Boolean Operators and Layer Masks
As you learned in Chapter 21, "Boolean Operations and Conditionals," a single pipe (|)
can be used as a non-shorting conditional OR operator, and a single ampersand (&) can
be used as a non-shorting conditional AND operator. However, when used with ints,
they have another important feature. | and & can be used to perform bitwise operations
on integers, and are therefore sometimes referred to as bitwise OR and bitwise AND.

Z02_Bond_App-B_p001-102.indd 6 10/06/22 8:55 PM

	 C# and Unity Coding Concepts	 7

In a bitwise operation, the operator is used to affect the individual bits of an integer, and
C# includes six different bitwise operators. The following list of them includes the effect
that they would have on an 8-bit byte (a simple integral type of data that can hold num-
bers from 0 to 255). The operations work the same way on 32-bit ints and 64-bit long
ints, but neither of those would have fit well on this page.

&	 AND	 00000101 & 01000100	returns 00000100

|	 OR	 00000101 | 01000100	returns 01000101

^	 Exclusive OR	 00000101 ^ 01000100	returns 01000001

~	 Complement (bitwise NOT)	 ~00000101 	 returns 11111010

<<	 Shift Left	 00000101 << 1 	 returns 00001010

>>	 Shift Right	 01000100 >> 2 	 returns 00010001

In Unity, bitwise operations are most often used to manage LayerMasks. Unity allows
developers to define up to 32 different layers, and a LayerMask is a 32-bit integer rep-
resentation of which layers to consider in any physics engine or raycast operation. In
Unity, the variable type LayerMask is used for LayerMasks, but it is just a wrapper for a
32-bit int with a little additional functionality. When you use a LayerMask, any bit that is
a 1 represents a layer that is seen, and any bit that is a 0 represents a layer that is ignored
(i.e., masked). This can be very useful if you want to check collision against only a specific
layer of objects or if you want to specify a layer to ignore. (For example, the built-in
layer 2, named Ignore Raycast, is automatically masked out for all raycast tests.)

Unity now has five reserved "Builtin" layers,1 and all GameObjects are initially placed
in the zeroth (0th) layer, which is named Default. The remaining, non-reserved layers
(numbered 3 and 6–31) are referred to as user layers, and giving one of these a name
places it in any pop-up menu of layers (e.g., the Layer pop-up menu at the top of each
GameObject Inspector).

Because the layer numbers start at zero, the bitwise LayerMask representation of the
zeroth layer is a 1 in the farthest-right position of the LayerMask. (See the variable
lmZero in the following code listing.) This can be a bit confusing (because the integer
value of this representation is 1, not 0), so many Unity developers use the bitwise shift
left operator (<<) to assign LayerMask values. (For example, 1<<0 generates the value 1,
which is the zeroth layer, and 1<<4 generates a 1 in the proper place to mask all but the
fourth physics layer.) Code Listing B.3 includes more examples.

1.	For reasons of backwards compatibility, these layers are 0–Default, 1–TransparentFX, 2–Ignore Ray-
cast, 4–Water, and 5–UI. For more info, see https://docs.unity3d.com/2020.3/Documentation/
Manual/Layers.html .

Z02_Bond_App-B_p001-102.indd 7 10/06/22 8:55 PM

8	 Appendix B  Useful Concepts

Code Listing B.3  LayerMask Examples (1s Are Bolded to Make Them More Visible)

| public class BitwiseEx : MonoBehaviour {
| void Start () {
| LayerMask lmNone = 0; // 00000000000000000000000000000000 bitwise	 // a
| LayerMask lmAll = ~0; // 11111111111111111111111111111111 bitwise	 // b
| LayerMask lmZero = 1; // 00000000000000000000000000000001 bitwise	 // c
| LayerMask lmOne = 2; // 00000000000000000000000000000010 bitwise	 // d
| LayerMask lmTwo = 1<<2; // 00000000000000000000000000000100 bitwise	 // e
| LayerMask lmThree= 8; // 00000000000000000000000000001000 bitwise	 // f
|
| LayerMask lmZeroOrTwo = lmZero | lmTwo;	 // g
| // Results in 00000000000000000000000000000101 bitwise
|
| LayerMask lmZeroThroughThree = lmZero | lmOne | lmTwo | lmThree;
| // Results in 00000000000000000000000000001111 bitwise
|
| lmZero = 1 << LayerMask.NameToLayer("TransparentFX");	 // h
| // Results in 00000000000000000000000000000010 bitwise
|
| LayerMask lmZeroOrOne = LayerMask.GetMask("Default","TransparentFX");	 // i
| // Results in 00000000000000000000000000000011 bitwise
|
| Debug.Log(lmZeroOrOne);	 // j
| // Prints: "UnityEngine.LayerMask"
| Debug.Log("lmZeroOrOne: " + lmZeroOrOne.ToStringPretty());
| // Prints: "lmZeroOrOne: 00000000000000000000000000000011"
| Debug.Log("lmZeroOrTwo: " + lmZeroOrTwo.ToStringPretty('-'));
| // Prints: "lmZeroOrTwo: -----------------------------1-1"
| }
| }
|
| // This is an example of an Extension Method (see later in Appendix B!)
| static public class LayerMaskPrettyPrintExtension {	 // k
| public static string ToStringPretty(this LayerMask lMask, char pad='0') {
| string str = System.Convert.ToString(lMask, 2);
| if (pad != '0') str = str.Replace('0', pad);
| return str.PadLeft(32, pad);
| }
| }

a.	 When all bits are set to 0, the LayerMask will ignore all layers.

b.	 When all bits are set to 1, the LayerMask will interact with all layers.

c.	 Note that 1 is the actual integer value of the LayerMask for layer 0 (in math
20 = 1).

d.	 Similarly, 2 is the integer value of the LayerMask for layer one (21 = 2), which
demonstrates how it can get confusing to assign LayerMask values using inte-
gers. Layer one is the predefined "TransparentFX" layer in Unity.

Z02_Bond_App-B_p001-102.indd 8 10/06/22 8:55 PM

	 C# and Unity Coding Concepts	 9

e.	 Using the shift left operator (<<) makes a lot of sense in this case because the 1 is
shifted two places to the left to create a LayerMask for the second layer.

f.	 Layer 3 of the LayerMask has an integer value of 8, which is 23 or 1<<3.

g.	 A bitwise OR is used to make a LayerMask that collides with either layer 0 or layer 2.

h.	 The static method LayerMask.NameToLayer()returns a layer number—an int
number, not a LayerMask—when it is passed a layer name. For example,
LayerMask.NameToLayer("TransparentFX") returns the int 1.

i.	 You can also go directly from a list of layer names to a LayerMask using
GetMask().

j.	 As you can see in the comment on the next line, calling Debug.Log() on a
LayerMask prints "UnityEngine.LayerMask" to the console, which is useless.
So I've created an extension method here (defined at // k) to "pretty print" the
LayerMask as a bitwise representation of the number.

k.	 As covered by the "Extension Methods" section of this appendix, an exten-
sion method like this adds functionality to an existing class without modify-
ing the code of that class. Here, we use it to add the ToStringPretty()
method to all LayerMask instances (as used at // j). The System.Convert.
ToString(lMask, 2) call converts the LayerMask lMask to binary (the 2) and
returns a string, which for lmZeroOrTwo is "101". If a padding character is
passed in, any zeros in str are replaced with the pad character. The PadLeft()
call then pads the string to at least 32 characters, prepending the char pad
('0' by default). See the results of two example calls at // j.

Coroutines
A coroutine is a feature of C# that enables a method to pause execution on a specific
yield line, allow other processes to execute, and then return to execution of the paused
method from exactly where it left off. In Unity, coroutines are often used when the
execution of a single function could take a very long time (and make the game look like
it had frozen). One example of this is the "Dice Probability Enumeration" section later in
this appendix; the function to calculate all the possible outcomes of rolling many dice
could take minutes or even hours to run, so pausing in the middle to let the rest of your
application (and the Unity Editor) update is very helpful. You can also use coroutines as
timers for tasks that you want to happen on a repeating schedule (as an alternative to
using an InvokeRepeating() call).

Unity Example—Coroutines
This example coroutine prints the time once every second. A call to print the time in the
Update() method would print it dozens of times per second, which is far too many.

To test this in Unity, create a C# script named Clock that is attached to Main Camera, and
then enter the code in Code Listing B.4.

Z02_Bond_App-B_p001-102.indd 9 10/06/22 8:55 PM

10	 Appendix B  Useful Concepts

Code Listing B.4  Clock.cs — Coroutines Example

| using System.Collections; // This is required for IEnumerator (used at // b)
| using UnityEngine;
|
| public class Clock : MonoBehaviour {
| void Start () {
| StartCoroutine(Tick());	 // a
| }
|
| IEnumerator Tick() {	 // b
| while (true) {	 // c
| print(System.DateTime.Now.ToString());
| yield return new WaitForSeconds(1);	 // d
| }
| }
| }

a.	 Use StartCoroutine() to start any coroutine. This is also where parameters
can be passed into the coroutine method if needed (I don't use the version of
StartCoroutine() where the name of the coroutine method is passed as a
string because the precompiler doesn't catch method name typos in the string
version).

b.	 All coroutines have a return type of IEnumerator.2

c.	 This infinite while loop will keep the print happening until the Tick() corou-
tine is exited or the whole program is stopped.

d.	 This yield statement tells the coroutine to wait about 1 second before continu-
ing. I say "about" 1 second because coroutine timing is not perfectly exact.

Unlike a normal function, it is okay to use the while(true) infinite loop within a corou-
tine as long as there is also a yield within the while loop (as seen in Code Listing B.4).

There are a few different kinds of yield statements, including:

yield return null; // Will continue as soon as possible
yield return new WaitForSeconds(10); // Will wait 10 seconds
yield return new WaitForEndOfFrame(); // Will wait until the next Update()
yield return new WaitForFixedUpdate(); // Will wait until the next FixedUpdate()

2.	Of course, you don't need to know what an IEnumerator is to use coroutines, but in case
you're curious, C# uses the interface IEnumerator (or IEnumerable) for any class that can
be iterated over (e.g., List<>). An IEnumerator keeps track of where it is in a collection and
can be asked to move on to the next iteration. For coroutines, the elements in the "collection"
are the chunks of code in between yield statements, so C# uses the IEnumerator to keep
track of both its place in the coroutine function and when the function is complete.

Z02_Bond_App-B_p001-102.indd 10 10/06/22 8:55 PM

	 C# and Unity Coding Concepts	 11

It is also possible to use Start() as a coroutine by making the return type IEnumerator
instead of void; however, after the first time you yield, the timing of the remainder of
the Start() coroutine will then be executed just like any other coroutine. Code Listing
B.5 shows the use of Start() as a coroutine in the ClockStart class. Similarly, you
can also use Update() as a coroutine, but I don't have any good examples of when that
would be a good idea.

Code Listing B.5  ClockStart.cs — Start() as a Coroutine

| public class ClockStart : MonoBehaviour {
| IEnumerator Start() {
| while (true) {
| print(System.DateTime.Now.ToString());
| yield return new WaitForSeconds(1);
| }
| }
| }

Delegates, Events, and UnityEvents
A function delegate is most simply thought of as a container for similar functions (or
methods) that can all be called at once. You can see delegates used in Chapter 32,
"Space SHMUP — Part 2," to enable a single call to the delegate event3 fireEvent()
to fire all weapons attached to a player's ship (Code Listing 32.18). Delegates are
frequently used to implement Strategy pattern for use in game AIs. You can learn more
about Strategy pattern in the "Object-Oriented Software Design Patterns" section of
this appendix.

The first step of using a function delegate is to define the delegate type (as shown in the
following line of code). The delegate type definition dictates the return type and param-
eter types required for any function to be assigned to an instance of this delegate type.

public delegate float FloatOpDelegate(float f0, float f1);

This line creates a delegate definition that requires two floats as input and a single
float as the return type. After the definition is set, you can define target methods that
fit this delegate definition. Code Listing B.6 shows the declaration of a delegate type
and definition of two target methods that match the delegate type (FloatAdd() and
FloatMultiply()).

3.	As discussed in Chapter 32, an event is a wrapper for a delegate that protects the delegate
by only allowing other classes to add or remove their own methods from it (a regular delegate
can be set to null by other classes, which is pretty dangerous to allow). When a delegate
variable is wrapped in an event, it is usually just referred to as an "event."

Z02_Bond_App-B_p001-102.indd 11 10/06/22 8:55 PM

12	 Appendix B  Useful Concepts

Code Listing B.6  DelegateExample.cs — Initial Setup

| using UnityEngine;
|
| public class DelegateExample : MonoBehaviour {
> // Create a delegate definition named FloatOpDelegate
> // This defines the parameter and return types for target functions
> public delegate float FloatOpDelegate(float f0, float f1);
>
> // FloatAdd parameter types and return type must match FloatOpDelegate
> public float FloatAdd(float f0, float f1) {
> float result = f0+f1;
> print("The sum of "+f0+" & "+f1+" is "+result+".");
> return(result);
> }
>
> // Target method types must match FloatOpDelegate, but param names can differ
> public float FloatMultiply(float num0, float num1) {
> float result = num0 * num1;
> print("The product of "+num0+" & "+num1+" is "+result+".");
> return(result);
> }
| }

Now, a variable of the type FloatOpDelegate can be created, and either of the target
methods can be assigned to it. I prefer to use the event keyword when declaring a
delegate variable to add a layer of protection.3 This event can then be called just like a
function. In Code Listing B.7, the field foDelegate is a delegate event variable. Note
that because foDelegate is a variable (and not a true function), its name begins with a
lowercase letter.

Code Listing B.7  DelegateExample.cs — Defining and Using foDelegate

| public class DelegateExample : MonoBehaviour {
| …
| public delegate float FloatOpDelegate(float f0, float f1);
|
| public float FloatAdd(float f0, float f1) { … }
|
| public float FloatMultiply(float f0, float f1) { … }
|
> // Declare a field "foDelegate" of the type FloatOpDelegate
> public event FloatOpDelegate foDelegate; // Declare a delegate event field
>
> void Awake() {
> // Assign the method FloatAdd() to foDelegate
> foDelegate = FloatAdd;
>

Z02_Bond_App-B_p001-102.indd 12 10/06/22 8:55 PM

	 C# and Unity Coding Concepts	 13

> // Call foDelegate as if it were a method; which then calls FloatAdd()
> foDelegate(2, 3); // Prints: The sum of 2 & 3 is 5.
>
> // Assign the method FloatMultiply() to foDelegate, replacing FloatAdd()
> foDelegate = FloatMultiply;
>
> // Call foDelegate(2,3); it calls FloatMultiply(2,3), returning 6
> foDelegate(2, 3); // Prints: The product of 2 & 3 is 6
> }
| }

Delegates can also be multicast, which means that more than one target method can be
assigned to the delegate at the same time. This is the ability that allows a single call to
one event to fire all five Weapons in the Chapter 32, "Space SHMUP — Part 2," prototype.
There, a single call to the fireEvent() delegate event in turn calls all the Fire() meth-
ods of the various Weapons on the player's ship. If a multicast delegate has a return
type that is not void (as in the FloatOpDelegate example), the return value of the final
target method called will be returned by the call to the delegate.

Beware that if a delegate or event that has no target methods attached is called, it
will throw an error. Prevent this by first checking to see whether the delegate or
event is null before calling it. Code Listing B.8 demonstrates both a multicast use of
foDelegate and a check to see whether foDelegate is null before calling it.

Code Listing B.8  DelegateExample.cs — Multicast Delegates and Checking for Null

| public class DelegateExample : MonoBehaviour {
| …
| void Awake() { … }
|
> void Start() {
> // Assign the method FloatAdd() to foDelegate
> foDelegate = FloatAdd;
>
> // Add the method FloatMultiply(), now BOTH are called by foDelegate
> foDelegate += FloatMultiply;
>
> // Check to see whether foDelegate is null before calling
> if (foDelegate != null) {
> // Call foDelegate(3,4); it calls FloatAdd(3,4) & FloatMultiply(3,4)
> float result = foDelegate(3, 4);
> // Prints: The sum of 3 & 4 is 7.
> // then Prints: The product of 3 & 4 is 12.
>
> print("The result of the Delegate call is "+result);
> // Prints: The result of the Delegate call is 12

Z02_Bond_App-B_p001-102.indd 13 10/06/22 8:55 PM

14	 Appendix B  Useful Concepts

> // The result is 12 because the last target method to be called
> // is the one that returns a value via the delegate.
> }
> }
| }

See the "Lambda Expressions =>" section of this appendix for information on how
lambda expressions are used with delegates.

UnityEvents
UnityEvents are a special form of delegate event in Unity that are able to be set eas-
ily in the Inspector pane. Please see the Observer Pattern (under "Object-Oriented
Software Design Patterns") in this appendix for an extensive example of how to use
UnityEvents.

Enums
An enum is a simple way to declare a type of variable that only has a few specific
options, and it is used throughout the book. Enums in this book are usually defined
outside of class definitions (either the multiline or single-line definition is fine, as shown
in the following lines).

public enum ePetType { // Enum type names often start with a lowercase e
 none,
 dog,
 cat,
 bird,
 fish,
 other
}

public enum eLifeStage { baby, teen, adult, senior, deceased }

Later, a variable can be declared using the enum's type (e.g., public ePetType). The
various options for an enum are referred to by the enum type, a dot, and the enum
value (e.g., ePetType.dog, as shown in Code Listing B.9).

Enums are actually integers masquerading as other values, so they can be cast to or
from int (as shown at // b and // c in Code Listing B.9). Because it is an int, any
enum defaults to the 0th option if not explicitly set. For example, declaring a new
variable eLifeStage age (as in Code Listing B.9 // a) automatically assigns age the
default value of eLifeStage.baby.

Z02_Bond_App-B_p001-102.indd 14 10/06/22 8:55 PM

	 C# and Unity Coding Concepts	 15

Code Listing B.9  Pet.cs — Enums Example

| public class Pet : MonoBehaviour {
| public string name = "Flash";
| public ePetType pType = ePetType.dog;
| public eLifeStage age; // By default, age=0, i.e., eLifeStage.baby	 // a
|
| void Awake() {
| int i = (int) ePetType.cat; // i would equal 2	 // b
| ePetType pType = (ePetType) 4; // pType would equal ePetType.fish	 // c
| }
| }

a.	 age receives the default value of eLifeStage.baby, which is equal to 0.

b.	 The code (int) shown on line 7 is an explicit typecast that forces ePetType.
cat to be interpreted as an int.

c.	 Here, the int literal 4 is explicitly typecast to a ePetType by the code
(ePetType).

Enums are often used in switch statements (as you’ve seen throughout this book). For
an example of defining a public enum within a class, see "Easing for Linear Interpola-
tions" under "Interpolation" in this appendix.

The [System.Flags] attribute can be used on an enum to give it several options that
can be selected at the same time (the Unity LayerMask is an example). For examples in
Appendix B, see "Attributes" and "Observer Pattern" under "Object-Oriented Software
Design Patterns." There is also an example in Code Listing 31.8 of Chapter 31, "Space
SHMUP — Part 1."

Extension Methods
Although Unity's built-in classes are locked, C# does provide a way to add more meth-
ods to them as extension methods. If you create a static class, within that class, you can
define methods that will seem (to the rest of your code) to be part of the built-in class.
An excellent example of this is the ToStringPretty() method that we added to the
LayerMask class at // k in Code Listing B.3. Code Listing B.10 repeats the ToString-
Pretty() definition and shows two calls to it.

Code Listing B.10  LayerMaskPrettyPrintExtension Class

| static public class LayerMaskPrettyPrintExtension {	 // a
| public static string ToStringPretty(this LayerMask lMask, char pad='0') {	 // b
| string str = System.Convert.ToString(lMask, 2);
| if (pad != '0') str = str.Replace('0', pad);
| return str.PadLeft(32, pad);
| }

Z02_Bond_App-B_p001-102.indd 15 10/06/22 8:55 PM

16	 Appendix B  Useful Concepts

| }
|
| LayerMask lmZeroOrTwo = 1<<0 | 1<<2; // "<<0" doesn't actually change anything
| Debug.Log("lmZeroOrTwo: " + lmZeroOrTwo.ToStringPretty());	 // c
| // Prints: "lmZeroOrTwo: 00000000000000000000000000000101"
| Debug.Log("lmZeroOrTwo: " + lmZeroOrTwo.ToStringPretty('-'));	 // d
| // Prints: "lmZeroOrTwo: -----------------------------1-1"

a.	 Extension methods can only be defined within a public static class. When
a class is static, no instances are allowed to be created from it (just like a static
field does not have multiple instances). The name of the static class does not
matter, so I tend to name them to clarify the class I'm extending. It is also pos-
sible to extend multiple classes in one static class, but I prefer using a single
static class for all extensions of a single extant class.

b.	 The this keyword on the first parameter allows the extension method to be
called as if it is a method of the LayerMask class, as shown at // c and // d.
The pad parameter demonstrates how to use optional parameters in extension
methods. For more on optional parameters, see Chapter 24, "Functions and
Parameters."

c.	 This line calls the ToStringPretty() extension method without the optional
pad parameter, allowing pad to default to '0' (the zero character).

d.	 This call to ToStringPretty() does pass in the optional pad parameter.

Interfaces
An interface declares methods and properties that will then be implemented by a
class. Think of an interface as a promise of functionality that can be kept by any class or
struct. Fields cannot be required by an interface, but properties and methods can. Any
class or struct that implements the interface can be referred to in code as that interface
type rather than as the class that it actually is.

Implementing an interface differs from subclassing (i.e., extending a class) in several
ways, one of the most interesting of which is that a class may implement several different
interfaces simultaneously, whereas a class can only extend a single superclass. Interface
names often begin with a capital I to distinguish them from class names.

Unity Example—Interfaces
Let's look at an example of using interfaces in Unity.

1.	 Create a new project in Unity named InterfacesExample Project.

2.	 In that project, create a C# script named InterfacesExample.

3.	 Attach the InterfacesExample script to the Main Camera in the scene.

Z02_Bond_App-B_p001-102.indd 16 10/06/22 8:55 PM

	 C# and Unity Coding Concepts	 17

4.	 Open the InterfacesExample script in Visual Studio and enter the code shown in Code
Listing B.11. Please add the interface IMovable definition above the Interfaces
Example class definition (which you do not need to edit for now).

Code Listing B.11  InterfacesExample.cs — The IMovable Interface

| using System.Collections.Generic;
| using UnityEngine;
|
> public interface IMovable {	 // a
> // Public Properties
> System.Type type { get; }	 // b
> Vector3 loc { get; set; }	 // c
>
> // Public Methods
> void Move();	 // d
> }
|
| public class InterfacesExample : MonoBehaviour {…}

a.	 Interfaces need to be declared public and usually start with a capital I.

b.	 Here, the interface promises a getter property named type that will return a
System.Type (the type of the class or struct that implements IMovable).

c.	 A Vector3 loc property with both get and set clauses is also promised.

d.	 Finally, a Move() method with no parameters that returns void is also
promised.

The public keyword is not needed for the properties and methods promised by an
interface because everything promised by an interface must be public to fulfill that
promise. Next, let's look at two very different objects that implement IMovable.

5.	 Add the struct AnimalStruct, class Droid, and class TurboDroid to the top of
the InterfacesExample script, as shown in Code Listing B.12.

Code Listing B.12  InterfacesExample.cs — Droid and TurboDroid classes and
AnimalStruct

| public interface IMovable {	 // a
| // Public Properties
| System.Type type { get; }
| Vector3   loc { get; set; }
|
| // Public Methods
| void   Move();
| }
|

Z02_Bond_App-B_p001-102.indd 17 10/06/22 8:55 PM

18	 Appendix B  Useful Concepts

> [System.Serializable]
> public class Droid : IMovable {	 // b
> public Vector3 myPosition;
> public Vector3 myVelocity = Vector3.right;
>
> public System.Type type => this.GetType();	 // c
>
> public Vector3 loc {
> get { return myPosition; }
> set { myPosition = value; }
> }
>
> virtual public void Move() {
> myPosition += myVelocity * Time.time;
> }
> }
|
> [System.Serializable]
> public class TurboDroid : Droid {	 // d
> public bool turbo = true;
>
> override public void Move() {
> base.Move();
> if (turbo) base.Move();
> }
> }
|
> [System.Serializable]
> public struct AnimalStruct : IMovable {	 // e
> public Vector3 position;
> public Vector3 velocity;
>
> public System.Type type {
> get { return this.GetType(); }
> }
>
> public Vector3 loc {
> get { return position; }
> set { position = value; }
> }
>
> public void Move() {
> loc += velocity * Time.time;
> }
> }
|
| public class InterfacesExample : MonoBehaviour {…}

Z02_Bond_App-B_p001-102.indd 18 10/06/22 8:55 PM

	 C# and Unity Coding Concepts	 19

a.	 I repeat the IMovable interface definition in this code listing so that you can see
how the other objects implement it (without your having to flip back to Code
Listing B.11).

b.	 The serializable class Droid implements IMovable, providing all the proper-
ties and methods promised by IMovable.

c.	 This is a lambda expression property (see "Lambda Expressions =>" here in
Appendix B). When DroidInstance.type is requested, this.GetType() is
returned.

d.	 The class TurboDroid extends (i.e., subclasses) the class Droid. One of the
things inherited from Droid is its implementation of IMovable. Because the
Move() method of Droid is virtual, it can be overridden here in TurboDroid
with a Move() method that calls base.Move() (the Move() method on Droid)
twice if turbo == true.

e.	 AnimalStruct implements IMovable as a struct, which is a different type
of data from a class (see "Structs" in this appendix). As you can see, it can
implement interfaces and define properties and methods just like a class, but it
cannot extend another struct.

As you can see, both classes and structs can implement the same interface, and I've
intentionally made the internals of Droid and AnimalStruct quite different from each
other. The magic of interfaces is this: The only thing the rest of your code needs to know
about anything that implements IMovable is that it can be trusted to fulfill all the prom-
ises of IMovable. We can see why that is so powerful in Code Listing B.13.

6.	 It's time to implement the InterfacesExample class.

Code Listing B.13  InterfacesExample.cs — Working with IMovables

| public interface IMovable {…}
| …
| public struct AnimalStruct : IMovable {…}
|
| public class InterfacesExample : MonoBehaviour {
> public List<IMovable> movables;
> System.Text.StringBuilder sb = new System.Text.StringBuilder();	 // a
|
| void Start() {
> movables = new List<IMovable>();
>
> movables.Add(new AnimalStruct { velocity = Vector3.right });	 // b
> movables.Add(new Droid());	 // c
> TurboDroid turboDroid = new TurboDroid();	 // d
> turboDroid.turbo = true;
> movables.Add(new TurboDroid());
| }

Z02_Bond_App-B_p001-102.indd 19 10/06/22 8:55 PM

ptg39131280

20	 Appendix B  Useful Concepts

|
| void Update() {
> sb.Clear();
> foreach (IMovable movable in movables) { // e
> movable.Move(); // Move() is called
> sb.Append(movable.type.ToString()); // Append its type as a string
> sb.Append(".x=");
> sb.Append(movable.loc.x); // Append the x element of loc
> sb.Append('\t'); // Append a tab
> if (movable is TurboDroid) { // f
> (movable as TurboDroid).turbo = !(movable as TurboDroid).turbo;
> }
> }
> Debug.Log(sb);
| }
| }

a. The System.Text.StringBuilder class is much more efficient than using + to
concatenate several strings. See "System.Text.StringBuilder" in this appendix for
more information.

b. A new instance of the AnimalStruct struct is created, with its velocity set to
[0, 0, 1]. It is added to the List movables on the same line.

c. Similarly, a new Droid instance is created and added to movables.

d. We want to set turbo=true on the new TurboDroid instance, but that isn't
something we can do if we're treating it as an IMovable. So turboDroid is cre-
ated as a TurboDroid instance, turbo is set to true, and then turboDroid is
added to movables.

e. Every IMovable is treated the same regardless of type.

f. This is quite verbose, but it shows how to use is and as with classes or structs
that implement an interface. is returns true if this IMovable is actually a
TurboDroid (which is only true for the last IMovable in movables). Then, if it
is a TurboDroid, we treat it as a TurboDroid to toggle its turbo value. The
effect this will have is that the TurboDroid will alternate moving at 1x or 2x the
speed of the other IMovables.

7. Save this script and return to Unity.

8. Click the Pause button first, and then click Play. This will allow you to step through
one frame at a time using the Step button (immediately to the right of the Pause but-
ton). (When stepping each frame like this, the value of Time.deltaTime will always
be 0.1f, so time-based code acts as if the game is running at 10 frames per second.)

	 C# and Unity Coding Concepts	 21

You should see something similar to the following lines printed to the Console in the
first few frames.

AnimalStruct.x=0.00 Droid.x=0.00 TurboDroid.x=0.00
AnimalStruct.x=0.02 Droid.x=0.02 TurboDroid.x=0.02
AnimalStruct.x=0.06 Droid.x=0.06 TurboDroid.x=0.10 <==<<
AnimalStruct.x=0.12 Droid.x=0.12 TurboDroid.x=0.16
AnimalStruct.x=0.20 Droid.x=0.20 TurboDroid.x=0.32 <==<<
AnimalStruct.x=0.30 Droid.x=0.30 TurboDroid.x=0.42

You can see in the lines marked by a left arrow (<==<<) that the x position of the
TurboDroid has increased at double the pace of the other IMovables because turbo ==
true in those frames.

Unity Makes Frequent Use of Interfaces for Observer Pattern
As you can read about in the "Object-Oriented Software Design Patterns" section of this
appendix, the Observer pattern sets up a broadcaster that sends specific messages out
when events occur. Over the last decade, Unity has greatly increased its use of interfaces
and Observer pattern. Two excellent examples of this are responding to player input in
both uGUI (Unity's graphical user interface system) and Unity's new InputSystem.4 The
following is an example of using Observer pattern to implement mouse dragging of
objects in uGUI.

1.	 To try this code, you will need to have the Unity UI package installed. This should be
the case by default, but to double check:

■■ From the Unity menu bar, choose Window > Package Manager.

■■ By default, this should show all the packages in your project (the menu under the
mouse cursor in Figure B.2a should show Packages: In Project). If you do see the
Unity UI package listed on the left, then you can skip the rest of these bullet points.

■■ If you do not see Unity UI on the left, then you need to install it.

■■ Click the Packages: In Project menu at the top of the Package Manager window
and choose Unity Registry.

■■ Scroll down the list on the left and select Unity UI.

■■ Click the Install button in the bottom-right corner of the window to install the
Unity UI package. Once it is installed, close the Package Manager window.

4.	uGUI is used throughout this book, but at this point, I have chosen to use the traditional Unity
Input class rather than the new InputSystem. InputSystem is much more robust and works
better cross-platform (making input consistent on everything from Windows to macOS to
PlayStation), but it takes much more work to set up and is still changing. Unity also has a new
UI Toolkit that will eventually replace uGUI. UI Toolkit is more like the Cascading Style Sheets
(CSS) that are common in web pages, but for now, the uGUI implementation is much more
robust and mature.

Z02_Bond_App-B_p001-102.indd 21 10/06/22 8:55 PM

22	 Appendix B  Useful Concepts

Figure B.2  The Package Manager (step 1) and Rect Transform settings for Image (step 5)

2.	 In the same Unity project, create a new scene and save it.

3.	 In that scene, create a uGUI Image by choosing GameObject > UI > Image from the
main Unity menu. This will add a few things to the Hierarchy:

■■ EventSystem: A GameObject that manages events for the GUI.

■■ Canvas: A Canvas to contain uGUI GameObjects.

■■ Image: A child of Canvas that we will use for this example.

4.	 This should automatically select the new Image, but if it does not:

a.	 In the Hierarchy, click the disclosure triangle next to Canvas.

b.	 Select the Image GameObject that is a child of Canvas.

5.	 Set the Rect Transform of Image to the settings shown in Figure B.2b. This will
position the Image (a white box) in the middle of the Game pane.

6.	 Create a C# script named DraggableImage and attach it to the Image GameObject.

7.	 Open the DraggableImage script in Visual Studio and enter the code in Code
Listing B.14.

Code Listing B.14  DraggableImage.cs

| using UnityEngine;
> using UnityEngine.EventSystems;	 // a
> using UnityEngine.UI;	 // b
|
> public class DraggableImage : MonoBehaviour, IBeginDragHandler,	 // c
> IDragHandler, IEndDragHandler {	 // c
|

Z02_Bond_App-B_p001-102.indd 22 10/06/22 8:55 PM

	 C# and Unity Coding Concepts	 23

> Vector2 mouseDownPosition; // The screen position of the MouseDown
> Vector2 beginDragPosition; // The start position of this Image
> Image image; // A reference to the Image Component
|
> public void OnBeginDrag(PointerEventData eventData) {	 // d
> if (image == null) image = GetComponent<Image>();
> image.color = Color.gray;
> mouseDownPosition = eventData.position;
> beginDragPosition = transform.position;
> }
|
> public void OnDrag(PointerEventData eventData) {	 // e
> Vector2 deltaFromBegin = eventData.position - mouseDownPosition;
> transform.position = beginDragPosition + deltaFromBegin;
> }
|
> public void OnEndDrag(PointerEventData eventData) {	 // f
> image.color = Color.white;
> }
| }

a.	 UnityEngine.EventSystems contains definitions for all the interfaces imple-
mented in this example.

b.	 UnityEngine.UI defines the Image class and all other uGUI classes.

c.	 This one single, very long line wrapped to fit on the page. After MonoBehav-
iour (which is the superclass extended by DraggableImage), three interfaces are
added, one for each method that will be implemented.

d.	 When the primary mouse button is pressed on the image, OnBeginDrag() is called.
First, if image is null, it is set to the Image component on this GameObject. Then,
image.color is set to gray, and the starting values for mouseDownPosition and
beginDragPosition are set as well.

e.	 OnDrag() is called (nearly) every frame between OnBeginDrag() and
OnEndDrag(). In our code, it updates the position of this GameObject. We
use the two different initial positions so that the relative position of the Image
to the mouse stays the same.

f.	 When the primary mouse button is released, OnEndDrag() is called, and the
color of image is reset to white.

Z02_Bond_App-B_p001-102.indd 23 10/06/22 8:55 PM

24	 Appendix B  Useful Concepts

The Unity UI package contains many of these interfaces, including an IDropHandler
interface that is called on any uGUI object that is underneath a dragged GameObject
when OnEndDrag() is called (e.g., with IDropHandler, you could make a bucket that
you drag objects into). You can find more about this in the Unity documentation.5

JSON (JavaScript Object Notation) in Unity
JSON (pronounced Jay-Sahn) is used in Unity to serialize data (i.e., to turn simple data
types or classes and structs that are [System.Serializable] into plain text). This is
very useful for encoding data in configuration or save files and—much like the XML
(eXtensible Markup Language) you can read about later in this appendix—JSON is
designed to be human readable.

In the first and second editions of the book, I used XML to encode the Deck and Layout
information for the Prospector Solitaire prototype (in Chapters 33 and 34), but in this
third edition, I switched to JSON primarily because Unity now provides a JSONUtility
class that makes converting to and from JSON extremely easy (you can see
JSONUtility in action in Chapter 33, "Prospector Solitaire — Part 1").

JSON comes in both pretty and minified versions, as shown in JSON Listings B.15 and
B.16. Both JSON listings show the same data (the card information for the deck of cards
used in Prospector Solitaire), but JSON Listing B.15 has several line breaks to make it
pretty (i.e., easier for humans to read), while JSON Listing B.16 shows the same data with
any extra whitespace removed to make it as compact as possible (for faster transmission
over the Internet).

I have added // comments in JSON Listing B.15, but be aware that actual JSON does not
allow any comments. The syntax coloring in these JSON listings is the same as that for
JSON files opened in Visual Studio Code, which I find to be excellent for opening and
editing JSON files. (Note that although the names are similar, Visual Studio Code is a
completely different program from the Visual Studio that installs with Unity.)

5.	You can see a list of all the supported interfaces in the Unity UI package at https://docs.
unity3d.com/Packages/com.unity.ugui@1.0/manual/SupportedEvents.html — accessed
August 24, 2021.

Z02_Bond_App-B_p001-102.indd 24 10/06/22 8:55 PM

	 C# and Unity Coding Concepts	 25

JSON Listing B.15  JSON_Deck.json from Prospector Solitaire (in three columns)

{
 "decorators": [// a
 {
 "type": "letter",
 "loc": {
 "x": -1.05,
 "y": 1.42,
 "z": 0.0
 },
 "flip": false,
 "scale": 1.25
 },
 {
 "type": "suit",
 "loc": {
 "x": -1.05,
 "y": 1.03,
 "z": 0.0
 },
 "flip": false,
 "scale": 0.4
 },
 {
 "type": "letter",
 "loc": {
 "x": 1.05,
 "y": -1.42,
 "z": 0.0
 },
 "flip": true,
 "scale": 1.25
 },
 {
 "type": "suit",
 "loc": {
 "x": 1.05,
 "y": -1.03,
 "z": 0.0
 },
 "flip": true,
 "scale": 0.4
 }
],
 "cards": [// b
 {
 "rank": 1,

 "face": "",
 "pips": [// c
 {
 "type": "pip",
 "loc": {
 "x": 0.0,
 "y": 0.0,
 "z": 0.0
 },
 "flip": false,
 "scale": 2.0
 }
]
 },
 {
 "rank": 2,
 "face": "",
 "pips": [
 {
 "type": "pip",
 "loc": {
 "x": 0.0,
 "y": 1.1,
 "z": 0.0
 },
 "flip": false,
 "scale": 1.0
 },
 {
 "type": "pip",
 "loc": {
 "x": 0.0,
 "y": -1.1,
 "z": 0.0
 },
 "flip": true,
 "scale": 1.0
 }
]
 },
 { // d
 "rank": 3,
 "face": "",
 "pips": [
 {
 "type": "pip",

 "loc": {
 "x": 0.0,
 "y": 1.1,
 "z": 0.0
 },
 "flip": false,
 "scale": 1.0
 },
 {
 "type": "pip",
 "loc": {
 "x": 0.0,
 "y": 0.0,
 "z": 0.0
 },
 "flip": false,
 "scale": 1.0
 },
 {
 "type": "pip",
 "loc": {
 "x": 0.0,
 "y": -1.1,
 "z": 0.0
 },
 "flip": true,
 "scale": 1.0
 }
]
 },

 …
 // Cards of rank 4–12
 …

 { // e
 "rank": 13,
 "face": "FaceCard_13",
 "pips": [
]
 }
] // f
} // g

a.	 This is the beginning of the decorators definition, which contains JSON for the
two letters and two suits at opposite corners of each card.

Z02_Bond_App-B_p001-102.indd 25 10/06/22 8:55 PM

26	 Appendix B  Useful Concepts

b.	 The cards section contains JSON for each of the 13 ranks of cards in the deck:
Ace (1) –King (13).

c.	 The pips of each card are the images of the suit that are in the middle of the
card (1 pip for Ace and ten pips for 10). Each pip can be positioned, scaled, and
flipped vertically.

d.	 The rank 3 card begins here and includes three pips.

e.	 The rank 13 card (the King) has no pips but does have a face, which is a
reference to the King face card image. The actual images have names like
"FaceCard_13S" (for the King of Spades) and so on (with "C", "D", "H", or "S"
appended to match the suit).

f.	 This closing bracket ends the list of cards.

g.	 This closing brace ends the JSON document.

As you can see, pretty JSON has a lot of extra white space (spaces, line breaks, etc.).
Once people are done editing JSON, it is often converted to minified JSON, which
eliminates the extra white space. JSON Listing B.16 shows the exact same information as
JSON Listing B.15, but as you can see, the minified version is much more compact.

JSON Listing B.16  A minified version of JSON_Deck.json (Showing same info as B.15)

{"decorators":[{"type":"letter","loc":{"x":-1.05,"y":1.42,"z":0},"flip":false,
"scale":1.25},{"type":"suit","loc":{"x":-1.05,"y":1.03,"z":0},"flip":false,
"scale":0.4},{"type":"letter","loc":{"x":1.05,"y":-1.42,"z":0},"flip":true,
"scale":1.25},{"type":"suit","loc":{"x":1.05,"y":-1.03,"z":0},"flip":true,
"scale":0.4}],"cards":[{"rank":1,"face":"","pips":[{"type":"pip","loc":{"x":0,
"y":0,"z":0},"flip":false,"scale":2}]},{"rank":2,"face":"","pips":[{"type":"pip",
"loc":{"x":0,"y":1.1,"z":0},"flip":false,"scale":1},{"type":"pip","loc":{"x":0,
"y":-1.1,"z":0},"flip":true,"scale":1}]},{"rank":3,"face":"","pips":[{"type":"pip",
"loc":{"x":0,"y":1.1,"z":0},"flip":false,"scale":1},{"type":"pip","loc":{"x":0,
"y":0,"z":0},"flip":false,"scale":1},{"type":"pip","loc":{"x":0,"y":-1.1,"z":0},
"flip":true,"scale":1}]},…
 // Cards of rank 4–12
…{"rank":13,"face":"FaceCard_13","pips":[]}]}

The most common way to work with JSON in Unity is via the JsonUtility class. This is
the same utility that Unity uses to serialize the Inspector, so it's very fast and robust. See
Chapter 33 for examples of using JsonUtility. You should also look at the Unity API
documentation.6

6.	https://docs.unity3d.com/2020.3/Documentation/ScriptReference/JsonUtility.html

Z02_Bond_App-B_p001-102.indd 26 10/06/22 8:55 PM

	 C# and Unity Coding Concepts	 27

Lambda Expressions =>
A lambda expression is best thought of as short-hand for a simple, anonymous function
(i.e., a function for which you don't need a name). You can see an example in the "Inter-
faces"7 section of this appendix as well as in Pseudocode Listing 28.13 of Chapter 28,
"Data-Oriented Design." Figure B.3 and the following bulleted list show the standard
syntax for a lambda expression.

Figure B.3  Lambda Expression syntax

■■ Parameters: One or more parameters are passed in, surrounded by parentheses
() and separated by commas. If there is only one parameter, parentheses are not
necessary.

■■ =>: The "fat arrow" separates the parameters from the operations.

■■ Operations: The operations of the lambda expression are surrounded by braces {}.
If there is only one statement, the braces are not required.

■■ Result: The result of the operations is returned to the left side of the = sign. If there
is more than one statement in the Operations section, a return keyword is required
to return a value (see // b in Code Listing B.17).

tip
FIELD VALUES COPIED FROM INSPECTOR COMPONENTS ARE JSON. 
When you right-click on any individual field shown in the Unity Inspector
(including Lists and arrays) and then choose Copy, the information that is
copied is in JSON format, so you can paste it into a standard text editor. In
fact, you can past it there, modify it, copy it again, and then right-click the
field in the Inspector and choose Paste to paste the modified values back
onto the Component. I have found this to be especially useful when working
with [System.Serializable] classes in the Inspector.

(Note: This only works on a single field, though that field can be a List or
array of serializable classes. However, when you click the three vertical dots
( 

…

) in the upper-right corner of a Component and choose Copy Component, it
is not copied as JSON.)

7.	On line // c of Code Listing B.12.

Z02_Bond_App-B_p001-102.indd 27 10/06/22 8:55 PM

28	 Appendix B  Useful Concepts

You may be wondering what defines the types of the parameters and the return type
of the result. This information comes from the delegate type that is targeted by the
lambda expression. Code Listing B.17 shows some lambda expressions that target the
FloatOpDelegate delegate type (from Code Listing B.6 of the "Delegates" section of
this appendix).

Code Listing B.17  Lambda Expressions and Delegates

| using UnityEngine;
|
| public class LambdaExample : MonoBehaviour {
> // The FloatOpDelegate methods from the "Function Delegates" section
> public delegate float FloatOpDelegate(float f0, float f1);    // a
|
> public float FloatMultiply(float f0, float f1) {
> float result = f0 * f1;
> print("The product of " + f0 + " & " + f1 + " is " + result + ".");
> return (result);
> }
|
> public float FloatAdd(float f0, float f1) {
> float result = f0 + f1;
> print("The sum of " + f0 + " & " + f1 + " is " + result + ".");
> return (result);
> }
|
|
> // Lambda used as anonymous function for the delegate lambdaMultiply    // b
> private FloatOpDelegate lambdaMultiply = (float f0, float f1) => {
> print("The product of " + f0 + " & " + f1 + " is " + (f0*f1) + ".");
> return f0 * f1;
> };
|
> // Simplified single-line lambda version
> private FloatOpDelegate lambdaAdd = (float f0, float f1) => f0 + f1;    // c
|
> System.Func<float, float, float> funcAdd = (f0, f1) => f0 + f1;    // d
|
> System.Func<float> theTime = () => Time.time;    // e
|
> private System.Action<float, float>    // f
> printSum = (f0, f1) => print("printSum: "+(f0 + f1));   // f
|
| public FloatOpDelegate foDelegate;
|
| void Start() {
> foDelegate += FloatMultiply;

Z02_Bond_App-B_p001-102.indd 28 10/06/22 8:55 PM

	 C# and Unity Coding Concepts	 29

> foDelegate += lambdaMultiply;    // g
>
> foDelegate(2, 4); // prints "The product of 2 & 4 is 8." twice
>
> print("lambdaAdd: " + lambdaAdd(2, 4)); // prints "lambdaAdd: 6"    // h
> print("funcAdd: " + funcAdd(2, 4)); // prints "funcAdd: 6"
> printSum(2, 4); // prints "printSum: 6"    // i
| }
| }

a.	 See the "Delegates" section for more info on the FloatOpDelegate delegate
and FloatMultiply() and FloatAdd() methods listed here.

b.	 lambdaMultiply is a FloatOpDelegate field (just like foDelegate in Code
Listing B.7) that has an anonymous lambda expression function assigned to it
here. The anonymous lambda expression has the exact same effects as
FloatMultiply(). Similar to delegate variable names, lambda expression
names begin with a lowercase letter because they are not true functions.

c.	 lambdaAdd emulates FloatAdd() (except for the print() call). Because there
is only one statement in the operations section, neither braces nor a return are
required.

d.	 System.Func<T1, T2, TResult> is a delegate type that works for anywhere
from 0 to 16 input types (T1, T2, etc.) and a single return type (TResult), with
the return type always specified last. FloatOpDelegate is effectively the same
as the System.Func<float, float, float> used here.

e.	 System.Func<TResult> is a delegate with no parameters that returns a result.
Note that the parentheses between = and => are required to indicate that there
are no input parameters to the lambda expression.

f.	 System.Action<T1, T2> is a delegate type that works for anywhere from 1 to
16 parameters with no return type (i.e., a return type of void).

g.	 Both FloatMultiply and lambdaMultiply are added to foDelegate. When
foDelegate is called, FloatMultiply and lambdaMultiply each print "The
product of 2 & 4 is 8."

h.	 lambdaAdd sums 2 and 4 and returns the value 6.

i.	 printSum prints without returning a value.

Naming Conventions
I initially covered naming conventions in Chapter 20, "Variables and Components," but
they're important enough to repeat here. The code in this book follows a number of
rules governing the naming of variables, functions, classes, and so on. Although none of
these rules are mandatory, following them makes your code more readable not only to

Z02_Bond_App-B_p001-102.indd 29 10/06/22 8:55 PM

30	 Appendix B  Useful Concepts

others who try to decipher it but also to yourself if you ever need to return to it months
later and hope to understand what you wrote. Every coder follows slightly different
rules—my personal rules have even changed over the years—but the rules I present here
have worked well for both me and my students, and they are consistent with most C#
code that I've encountered in Unity:

1.	 Use camelCase for pretty much everything. In a variable name that is composed of
multiple words, camelCase capitalizes the initial letter of each word (except for the
first word, in the case of variable names).

2.	 Variable names should start with a lowercase letter (e.g., someVariableName).

3.	 Function names should start with an uppercase letter (e.g., Start(), FunctionName()).

4.	 Class names should start with an uppercase letter (e.g., GameObject, ScopeExample).

5.	 Interface names often start with a capital I (e.g., IMovable).

6.	 Delegate and lambda expression variable names should start with a lowercase letter
(e.g., foDelegate, lambdaMultiply).

7.	 Private variable names often start with an underscore (e.g., _hiddenVariable).
(In code written by Unity private field names sometimes start with M_.)

8.	 Static variable names are often all caps with snake_case (e.g., NUM_INSTANCES). As
you can see, snake_case combines multiple words with an underscore in between
them.

Object-Oriented Software Design Patterns
In 1994, the "Gang of Four" (Erich Gamma, Richard Helm, Ralph Johnson, and John Vis-
sides) released the book Design Patterns: Elements of Reusable Object-Oriented Software,8
which described various patterns that could be used in software development to create
effective, reusable object-oriented code. This book uses three of those patterns and
refers to a fourth.

Component Pattern
Component pattern is first covered in Chapter 27, "Object-Oriented Thinking," and it
is used throughout Unity. The core idea of the Component pattern is to group closely
related functions and data into a single class while at the same time keeping each class
as small and focused as possible.9

8.	Erich Gamma, Richard Helm, Ralph Johnson, and John Vissides, Design Patterns: Elements of
Reusable Object-Oriented Software (Reading, MA: Addison-Wesley, 1994). The Factory pattern
is one of many described in the book. Others include the Singleton pattern, which is used in
many of the tutorials in this book.

9.	The full description of the Component pattern is far more complex, but this serves for our
needs.

Z02_Bond_App-B_p001-102.indd 30 10/06/22 8:55 PM

	 C# and Unity Coding Concepts	 31

The components that are attached to GameObjects in Unity are all based on this pattern.
Each GameObject in Unity is a very small class that can act as a container for several
components that each do a specific—and isolated—job. For example:

■■ Transform handles position, rotation, scale, and hierarchy.

■■ Rigidbody handles motion and physics.

■■ Colliders handle actual collision and the shape of the collision volume.

Although all of these jobs are related, they are separate enough to warrant their own
component. Making each a separate component also enables easy expansion in the
future: separating Colliders from the Rigidbody means that you could easily add a new
kind of Collider—a ConeCollider, for instance—and Rigidbody would be able to use it
without any changes to the Rigidbody code.

This is certainly important for game engine developers, but what does it mean to game
designers and prototypers? The most important thing that thinking in a component-
oriented way gives you is smaller, shorter classes. When your scripts are shorter, they are
easier to code, easier to share with other people, easier to reuse, and easier to debug—
all of which are very noble goals.

The only real negative of component-oriented design is that implementing it well takes
a decent amount of forethought, which somewhat flies in the face of the prototyper's
philosophy of getting things working as quickly as possible. As a result of this dilemma,
Part III of this book covers both a more traditional prototyping style of just writing what
works in the first several chapters and a more component-oriented approach in the
last chapters. The best use of components in this book is the Dungeon Delver project in
Chapters 35 and 36, which was written to feature component-oriented design.

The components in the Entity Component System (ECS) aspect of Unity's Data-Oriented
Tech Stack (DOTS) are introduced in Chapter 28, "Data-Oriented Design," and are very
different from the traditional Unity Components that are attached to GameObjects.
Although the ECS components are based somewhat on the same idea of separating
large scripts into smaller chunks, ECS components are extremely small and contain only
data, with no functionality. Though they both use the word "components," ECS and
object-oriented design patterns are antithetical to each other. For more information on
DOTS and ECS, please see the "Data-Oriented Design" chapter.

Observer Pattern
The Observer pattern gives us a way to listen for events to happen in the game without
continually polling for them. In the Observer pattern, a subject is created that will send
a message when a specific event happens, and one or more observers can be added to
that subject as listeners to be notified when that event happens. In standard C#, events
and delegates are used for the subjects that observers can add listeners to. In Unity,

Z02_Bond_App-B_p001-102.indd 31 10/06/22 8:55 PM

32	 Appendix B  Useful Concepts

special UnityEvents are a very flexible way of implementing the Observer pattern, as
shown in Code Listings B.18 and B.19.

1.	 Create a new scene in Unity called _Scene_ObserverPattern that is based on the Basic
(Built-in) scene template.

2.	 Create a new script named ObserverPattern.cs and attach it to the Main Camera.

3.	 Open the ObserverPatternSubject script in Visual Studio and enter the code shown in
Code Listing B.18.

Code Listing B.18  ObserverPattern_Subject.cs

| using System.Collections;
| using System.Collections.Generic;
| using UnityEngine;
> using UnityEngine.Events;	 // a
|
> [System.Flags] public enum eKeyState { none=0, down=1, up=2 };	 // b
|
> [System.Serializable]
> public class KeyWatchSubject {	 // c
> public KeyCode key;
> public eKeyState statesToWatch;
> public UnityEvent<KeyCode, eKeyState> listeners;	 // d
> }
|
| public class ObserverPattern : MonoBehaviour {
> public List<KeyWatchSubject> keyWatchSubjects;	 // e
|
| void Update() {
> foreach (KeyWatchSubject subject in keyWatchSubjects) {
> if ((subject.statesToWatch & eKeyState.down) != 0) {	 // f
> if (Input.GetKeyDown(subject.key)) {
> subject.listeners.Invoke(subject.key, eKeyState.down);	 // g
> }
> }
> if ((subject.statesToWatch & eKeyState.up) != 0) {	 // h
> if (Input.GetKeyUp(subject.key)) {
> subject.listeners.Invoke(subject.key, eKeyState.up);
> }
> }
> }
| }
| }

Z02_Bond_App-B_p001-102.indd 32 10/06/22 8:55 PM

	 C# and Unity Coding Concepts	 33

a.	 UnityEvents require you to import the UnityEngine.Events library.

b.	 The [System.Flags] attribute tells Unity to treat this enum as a bitmask (like
physics layers in Unity). Instead of getting a pop-up allowing you to choose
only one option, you will get a pop-up showing all options—including "None"
and "Everything"—and allowing you to check whichever ones you like. Here,
you want to be able to create subjects that notify on KeyDown, KeyUp, or both.
When you make a [System.Flags] enum, you must explicitly define each
member of the enum as a power of 2 for Flags to work (it is also possible to
specify combinations like downAndUp=3, which would select both eKeyState.
down and eKeyState.up).

c.	 This serializable KeyWatchSubject class will allow you to create subjects that
will respond to key presses and can notify observers when they happen.

d.	 A UnityEvent can have anywhere from zero to four parameters that define what
the listening functions must look like. Here, we require that the listening func-
tions must take a KeyCode and an eKeyState as arguments by placing KeyCode
and eKeyState between the angle brackets.

e.	 A List of KeyWatchSubjects allows us to respond to any key press or release.

f.	 The result of the bitwise AND (&) of subject.statesToWatch and the
eKeyState.down state will be non-zero if the down state is one of the ones
we're supposed to watch for.

g.	 Then, if that key was pressed down this frame, the listeners UnityEvent is
Invoked, passing the KeyCode and whether it was pressed or released to all
listeners of that UnityEvent. Unlike a standard C# delegate or event, UnityEvents
can be invoked without fear of a null reference exception.

h.	 A similar bitwise AND (&) is done with statesToWatch and the up state, and if
eKeyState.up is a state to watch for, then listeners will be invoked.

4.	 Save the ObserverPattern script and return to Unity.

5.	 Select Main Camera in the Hierarchy and look at the ObserverPattern (Script)
component in the Inspector.

6.	 Add two KeyWatchSubjects to the keyWatchSubjects List with the key and
statesToWatch settings shown in Figure B.4a.

Z02_Bond_App-B_p001-102.indd 33 10/06/22 8:55 PM

34	 Appendix B  Useful Concepts

Figure B.4  UnityEvent settings for the ObserverPattern (Script) component of Main Camera

7.	 Create an empty GameObject in the Scene and name it Listener.

8.	 To make a script that will listen to the subjects, create a script named ObserverPattern_
Listener.cs and attach it to the Listener GameObject.

9.	 Open the ObserverPattern_Listener script in Visual Studio and enter the code shown
in Code Listing B.19.

Code Listing B.19  ObserverPattern_Listener.cs

| using UnityEngine;
|
| public class ObserverPattern_Listener : MonoBehaviour {
> public void KeyListener(KeyCode key, eKeyState keyState) {	 // a
> string msg = this.name + " observed the " + key + " was ";
> msg += (keyState == eKeyState.down) ? "pressed." : "released.";	 // b
> Debug.Log(msg);
> }
| }

a.	 To work with a UnityEvent, the listening method must be public and must
have the same parameter types as the UnityEvent (in this case, a KeyCode and
an eKeyState).

b.	 The ternary operator is used here to return "pressed." if the keyState is
eKeyState.down and "released." if it is not. We only have these two pos-
sibilities because KeyListener() will only be called by the UnityEvent on the
ObserverPattern script when a key is pressed or released.

10.	 Save the ObserverPattern_Listener script.

Z02_Bond_App-B_p001-102.indd 34 10/06/22 8:55 PM

ptg39131280

C# and Unity Coding Concepts	 35

11. Add listener methods to the listeners field of each of the keyWatchSubjects as
shown in Figure B.4b. To do this:

a. Click the + under Listeners to add an element to the UnityEvent listeners
(under the mouse cursor in Figure B.4a).

b. Drag the Listener GameObject from the Hierarchy onto the field under Runtime
Only that is surrounded by a red rectangle in Figure B.4b. That field will now
show Listener, though it will not yet display the text "(ObserverPattern_Listener)".

c. Click the No Function pop-up menu (under the mouse cursor in Figure B.4b) and
choose ObserverPattern_Listener > KeyListener. This tells the UnityEvent which
script component and method you want to be called when the UnityEvent is
invoked.

d. Continue until your keyWatchSubjects settings match Figure B.4b.

12. Save your scene.

13. Click Play. If your keyWatchSubjects settings match mine, you should be listening
for the spacebar and Return (Enter on Windows) keys to be pressed.

As you press space and Return, you will see several instances of these three messages:

Listener observed the Space was pressed.
Listener observed the Space was released.
Listener observed the Return was pressed.

This shows that the Listener GameObject was notified when the UnityEvents on the
Main Camera ObserverPattern script were invoked. The new Unity InputSystem is based
on this use of Observer pattern for keyboard and controller input. InputSystem requires
more configuration than the Input class that is used throughout this book (making
Input a better choice for prototypes), but it is very useful for large, cross-platform
projects. Find out more about Unity's InputSystem at https://learn.unity.com/project/
using-the-input-system-in-unity.

For an example of using standard C# events to implement the Observer pattern, please
see the "Using a Function Delegate Event to Fire" section of Chapter 32, "Space SHMUP —
Part 2," where a single C# event named fireEvent is used to fire all the weapons that
are attached to the player ship. I wanted to show you UnityEvents here because they are
an important way that you can add observers to events in your code without changing
the C# code.

Unity UI's Built-In Callbacks and Observer Pattern
The Unity UI package (that implements uGUI) contains several examples of a modified
Observer pattern. If a script on a GameObject implements one of several interfaces (e.g.,
IBeginDragHandler), then the Unity EventSystem knows to call a specific method
(OnBeginDrag() in this example) on that uGUI element whenever the player presses

https://learn.unity.com/project/using-the-input-system-in-unity
https://learn.unity.com/project/using-the-input-system-in-unity

36	 Appendix B  Useful Concepts

the mouse button while the mouse is over that GameObject. See the "Interfaces"
section of this appendix for that example.

Singleton Pattern
The Singleton pattern is the most commonly used in this book and can be found in sev-
eral chapters. If you know that there will only ever be a single instance of a given class in
the game, you can create a singleton for that class, which is a static variable of that class
type that can be used to reference it from anywhere in code. Code Listing B.20 shows an
example.

Code Listing B.20  Singleton Pattern

| public class Hero : MonoBehaviour {
> static public Hero S;	 // a
|
> void Awake() {
> if (S == null) {	 // b
> S = this;	 // c
> } else {
> Debug.LogError("The singleton S of Hero has already been set!");
> }
> }
| }
|
|
| public class Enemy : MonoBehaviour {
| void Update() {
> Vector3 heroLoc = Hero.S.transform.position;	 // d
| }
| }

a.	 The static public field S is the singleton for hero. I usually name all of my
singletons S.

b.	 The if (S == null) statement protects you from accidentally having a second
Hero instance somewhere in the code. If a second instance of Hero exists and
tries to assign itself to S, then the error message will be thrown.

c.	 Because there will only ever be one instance of the Hero class, it is assigned to
S on Awake(), when the instance is created.

d.	 Because S is both public and static, it can be referenced anywhere in code via
the class name as Hero.S.

Z02_Bond_App-B_p001-102.indd 36 10/06/22 8:55 PM

	 C# and Unity Coding Concepts	 37

If you search online, you're likely to find a lot of hate out there for the Singleton pattern.
This is largely because of two things:

1.	 Singletons are unsafe in a production environment: Singletons are static and
public, meaning that ANY class or function in your entire project could potentially
access them. The danger here is that some random class written by someone else
could change a public field of your singleton class instance, and you would have no
idea who did it!

2.	 The Singleton pattern is very simple to implement and therefore often
overused: As the simplest design pattern to implement, Singleton was quickly
used by a lot of people, and soon caused problems due to the preceding point. This
meant that a lot of people used it in places where it wasn’t really appropriate, which
is part of its bad reputation.

Luckily, you can avoid the first danger in several ways. One that I like is making the sin-
gleton not only static but also private, so that only instances of this single class can
access it (and because it's a singleton, there will only ever be one instance of this class).
You then write static public accessor properties through which other classes and
functions can alter fields of the singleton instance. If you find that something unknown
in your code is changing a property, then you can place a debugger breakpoint in the
set clause of the property and use the call stack in the debugger to see what method
made the call to set the property.

When you write prototypes, development speed is often more important than safety, so
my recommendation is that you should feel free to use singletons when you need them
while prototyping but avoid using them in production code (or use modified singletons
that are less problematic).

Strategy Pattern
As mentioned in the "Function Delegates" section of this appendix, the Strategy pattern
is often used in AI and other areas where you might want to change behavior based on
conditions yet still only call a single function delegate. In the Strategy pattern, a func-
tion delegate is created for a type of action that the class can perform (e.g., taking an
action in combat), and an instance of that delegate is given different functions to call
based on the situation. This avoids complicated switch statements in the code, because
the delegate can be called in a single line (see Code Listing B.21).

Code Listing B.21  Strategy Pattern

| using UnityEngine;
|
| public class Strategy : MonoBehaviour {
> public delegate void ctionDelegate();	 // a
|

Z02_Bond_App-B_p001-102.indd 37 10/06/22 8:55 PM

38	 Appendix B  Useful Concepts

> public ActionDelegate strategy;	 // b
| // public System.Action strategy;
|
> public void Attack() {/* Attack code would go here */ }	 // c
> public void Wait() { /* Wait code here */ }
> public void Flee() { /* Flee code here */ }
|
> void Awake() {
> strategy = Wait;	 // d
> }
|
| void Update() {
> // Possibly change strategy
> Vector3 hPos = Hero.S.transform.position;
> if ((hPos - transform.position).magnitude < 100) {	 // e
> strategy = Attack;
> }
>
> // Execute the method for the current strategy
> if (strategy != null) strategy();	 // f
| }
| }

a.	 The ActionDelegate delegate type is defined. It has no parameters and a
return type of void.

b.	 strategy is created as an instance of ActionDelegate. (As shown in the com-
ment on the subsequent line, the built-in System.Action delegate could also
have been used here in place of defining our own ActionDelegate.)

c.	 The Attack(), Wait(), and Flee() functions here are placeholders that are
meant to show that various actions would be defined matching the parameters
and return type of the ActionDelegate delegate type.

d.	 The initial strategy for this agent is to Wait, so Wait is assigned as the target
method of strategy.

e.	 If the Hero singleton comes within 100 meters of this agent, it will switch its
strategy to Attack by replacing the target method of strategy.

f.	 Regardless of which strategy is selected, strategy() is called to execute it.
Checking that strategy!= null before calling it is useful because calling a null
function delegate (i.e., one that has no target function assigned to it) will cause
a runtime error.

More Information on Design Patterns in Game Programming
Game Programming Patterns10 by Robert Nystrom is a fantastic book that covers the
most common software design patterns used in games. You can purchase a print or
electronic copy of it from most online retailers, or you can just read the web version for

Z02_Bond_App-B_p001-102.indd 38 10/06/22 8:55 PM

	 C# and Unity Coding Concepts	 39

free on his website: http://GameProgrammingPatterns.com . It's a great resource for
improving your OOP coding.

Operator Precedence and Order of Operations
Just as in algebra, some operators in C# take precedence over others. One example that
you are probably familiar with is the precedence of * over + (e.g., 1 + 2 * 3 = 7 because
the 2 and 3 are multiplied before the 1 is added to them). Here is a list of common
operators and their precedence. An operator that is higher in this list will happen before
one that is lower.

Table B.1  Operator Precedence

Precedence Operator Description

1. 	 () Operations grouped by parentheses always take precedence

2. 	 F() The calling of a function

3. 	 a[] The access of an array

4. 	 i++ Post-increment

5. 	 i-- Post-decrement

6. 	 ! NOT

7. 	 ~ Bitwise NOT (complement)

8. 	 ++i Pre-increment

9. 	 --i Pre-decrement

10. 	 * Multiply

11. 	 / Divide

12. 	 % Modulus

13. 	 + Add

14. 	 - Subtract

15. 	 << Bit shift left

16. 	 >> Bit shift right

17. 	 < Less than

18. 	 > Greater than

19. 	 <= Less than or equal to

21. 	 >= Greater than or equal to

10.	Robert Nystrom, Game Programming Patterns (Genever Benning, 2014). ©2014 by Robert
Nystrom.

Z02_Bond_App-B_p001-102.indd 39 10/06/22 8:55 PM

40	 Appendix B  Useful Concepts

Precedence Operator Description

22. 	 == Equal to (the comparison operator)

23. 	 != Not equal to

24. 	 & Bitwise AND

25. 	 ^ Bitwise exclusive OR (XOR)

26. 	 | Bitwise OR

27. 	 && Conditional, shorting AND

28. 	 || Conditional, shorting OR

29. 	 = Assignment

Race Conditions
Unlike many of the other topics in this section, a race condition is something that you
definitely do not want in your code. A race condition occurs when your code relies on
one thing happening before another, but it's possible that the two things could happen
out of order and cause unexpected behavior or even a crash. In traditional computer
science, race conditions are a serious consideration when designing any code that is
intended for multiprocessor computers, multithreaded operating systems,11 or net-
worked applications (where different computers around the world could possibly end
up in a race condition with each other), but it is also an issue for Unity games because
they involve so many different GameObjects, each receiving Awake(), Start(), and
Update() calls at roughly the same time as all the others.

Let's create an example.

Unity Example—Race Conditions
Follow these steps:

1.	 Create a new Unity project named Race Condition based on the 3D Core template.

2.	 Create a C# script named SetValues and enter the code in Code Listing B.22.

Code Listing B.22  SetValues.cs

| using System.Collections;
| using UnityEngine;
|
| public class SetValues : MonoBehaviour {
> static public int[] VALUES;

11.	 Happily, the C# Job System that is part of Unity's Data-Oriented Tech Stack has safeguards
to avoid race conditions when writing multithreaded code, but that's not what we're talking
about here.

Z02_Bond_App-B_p001-102.indd 40 10/06/22 8:55 PM

	 C# and Unity Coding Concepts	 41

|
| void Start() {
> VALUES = new int[] { 0, 1, 2, 3, 4, 5 };
| }
| }

3.	 Create a second script named ReadValues and enter the code in Code Listing B.23.

Code Listing B.23  ReadValues.cs

| using System.Collections;
| using UnityEngine;
|
| public class ReadValues : MonoBehaviour {
| void Start() {
> print(SetValues.VALUES[2]);
| }
| }

4.	 Be sure that you have saved both scripts before returning to Unity.

5.	 Attach both scripts to Main Camera and click Play. When you do so, you'll receive
one of two possible outputs in the Console:

■■ 2

■■ NullReferenceException: Object reference not set to an instance of an object

The thing that determines what outcome you see is which of the two Start() functions
happens to be called first. If SetValues.Start() is called before ReadValues.
Start(), everything works great. However, if ReadValues.Start() is called before
SetValues.Start(), you get a null reference exception because ReadValues.Start()
is trying to access SetValues.VALUES[2] while SetValues.VALUES is still null.

In early versions of Unity, it was extremely difficult to know which of these Start()
methods would be called first. Happily, the Script Execution Order window now allows
you to choose the order in which scripts execute.

6. 	 From the Unity menu bar, choose Edit > Project Settings…, which opens the Project
Settings window.

7.	 Click Script Execution Order on the left side of the Project Settings window, as shown
in Figure B.5a to open the Script Execution Order Inspector (SEO Inspector). Note
that there are several scripts already in the SEO Inspector because of TextMesh Pro
and other Unity extensions.

Z02_Bond_App-B_p001-102.indd 41 10/06/22 8:55 PM

42	 Appendix B  Useful Concepts

Figure B.5  The Script Execution Order Inspector

8.	 Add the ReadValues class to the SEO Inspector by clicking the + button under the
arrow cursor in Figure B.5a.

9.	 Do the same to also add SetValues class to the SEO Inspector.

By default, ReadValues and SetValues will get the execution order values 100 and 200 as
shown in Figure B.5a.

10.	 Click the Apply button in the SEO Inspector.

11.	 Click Play in Unity. This execution order will guarantee that a NullReferenceException
appears in the Console.

12.	 Stop Unity playback.

13.	 Use the double-line handle on the SetValues bar in the SEO Inspector (under the
cursor in Figure B.5b) to drag SetValues up above Default Time. Now your Inspector
should look like Figure B.5b.

14.	 Click Apply in the SEO Inspector and close the SEO Inspector window.

15.	 Click Play in Unity.

Now that SetValues.Start() is guaranteed to be called before ReadValues.Start(),
the "2" result is guaranteed to appear in the Console.

The double-size Default Time row shows when all non-specified scripts will execute.

When dealing with two scripts that both use Start(), Awake(), or any other
MonoBehaviour call that is managed by Unity, the Script Execution Order Inspector is
the only way to guarantee that one will run before the other.

Z02_Bond_App-B_p001-102.indd 42 10/06/22 8:55 PM

ptg39131280

C# and Unity Coding Concepts	 43

Recursive Functions
A function designed to call itself is known as a recursive function. Recursive functions are
introduced in the "Recursive Functions" section of Chapter 24, "Functions and Param-
eters," so please read the information in that chapter.

As demonstrated in Chapter 24, one simple example of a recursive function could be
a function to calculate the factorial of a number (in math, 5! [5 factorial] is the multi-
plication of five and every other natural number below it: 5! = 5 * 4 * 3 * 2 * 1 = 120).
Another fantastic example of a recursive function is the recursive Bézier curve interpola-
tion method that is explored in the "Interpolation" section of this appendix. Please see
both of these examples to learn about recursive functions.

String Interpolation – $""
While not featured extensively in this book, string interpolation is one of the easiest
ways to format data into a string. You can use it to replace many instances of string
conversion (e.g., (12345.6789f).ToString("#,##0.00") to output the string
"12,345.68"). String interpolation using $"" is also able to combine multiple variables
into one string and provide formatting and alignment for them. Code Listing B.24 dem-
onstrates some uses of string interpolation. Several comments in the code listing show
the console output of the previous line.

Code Listing B.24  StringInterpolationExample.cs

| using UnityEngine;
|
| public class StringInterpolationExample : MonoBehaviour {
> System.Text.StringBuilder sb;	 // a
|
| void Start() {
> float inchToMM = 25.4f;
> float inchToFt = 12;
> float inchToYd = 36;
> float ftToMile = 5280;
> sb = new System.Text.StringBuilder();
>
> //–––––––– Simple expressions in String Interpolation	 // b
> sb.AppendLine($"1 foot (ft) is {inchToFt} inches (in)");
> //1 foot (ft) is 12 inches (in)
> sb.AppendLine($"1 mile is {ftToMile}ft or {ftToMile * inchToFt}in");
> //1 mile is 5280ft or 63360in
> sb.Append($"1 mile is {ftToMile:#,##0}ft"); // c
> sb.AppendLine($" or {ftToMile * inchToFt:#,##0}in");
> //1 mile is 5,280ft or 63,360in
>
> sb.Append("\n\n"); // Two line breaks
>

ptg39131280

44	 Appendix B  Useful Concepts

> //–––––––– Numeric formatting // d
> double n = 12345.6789;
> sb.AppendLine($"No formatting: {n}");
> //No formatting: 12345.6789
> sb.AppendLine($"000000.000000: {n:000000.000000}"); // Zeros
> //000000.000000: 012345.678900
> sb.AppendLine($"######.######: {n:######.######}"); // Number symbols
> //######.######: 12345.6789
> sb.AppendLine($"#,###.##: {n:#,###.##}");
> //#,###.##: 12,345.68
>
> sb.Append("\n\n"); // Two line breaks
>
> //–––––––– Left and Right Alignment	 // e
> sb.AppendLine($"Left Aligned: |{"<==20 chars==>", -20}|");
> // "Left Aligned: |<==20 chars==> |" // 20 chars between pipes
> sb.AppendLine($"Right Aligned: |{1234.5678f, 20 : 0.##}|");
> // "Right Aligned: | 1234.57|" // The float is rounded
>
> sb.Append("\n\n"); // Two line breaks
>
> sb.AppendLine(" ----8--- = -------16-------m = -------16-------mm"); 	// f
> PrintUnitConversion("Inch", inchToMM);
> PrintUnitConversion("Foot", inchToMM * inchToFt);
> PrintUnitConversion("Yard", inchToMM * inchToYd);
> PrintUnitConversion("Mile", inchToMM * inchToFt * ftToMile);
>
> Debug.Log(sb.ToString());
| }
|
> //–––––––– Combining it all together into a table of data // g
> void PrintUnitConversion(string uName, float asMM) {
> sb.Append($"1 {uName, -8}");
> sb.Append($" = {(asMM / 1000f), 16 : #,##0.000}m");
> sb.AppendLine($" = {asMM, 16 : #,0.#}mm");
> }
| // ----8--- = -------16-------m = -------16-------mm
| //1 Inch = 0.025m = 25.4mm
| //1 Foot = 0.305m = 304.8mm
| //1 Yard = 0.914m = 914.4mm
| //1 Mile = 1,609.344m = 1,609,344mm
| }

a. For information about StringBuilder, see the next heading in this appendix.

b. As shown in these lines, any variable name or simple expression can be placed
between braces to be interpolated into the string.

c. A string interpolation call cannot span two lines of code, which is why this is
split into two $"" interpolations. These two lines are also the first instance of
using # (number symbol) and 0 (zero) after a colon (:) for numeric formatting.

	 C# and Unity Coding Concepts	 45

d.	 The double n is shown here with no formatting, 0s that force a character even
if it is not needed, #s that do not force extra characters, and a comma in the
thousands place that causes the comma separation of every three digits above
the decimal. Note that the number of #s after the decimal limits the number of
places printed, while #s before the decimal do not truncate the number (e.g.,
$"{n:#.#}" prints 12345.7).

e.	 Placing a comma and a number after the simple expression causes the string
for that expression to take up a specific number of spaces in output. If the
number is negative, the text will be left-aligned, and if it is positive, it will be
right-aligned.

f.	 This line prints the header seen after // g.

g.	 This function adds lines for several imperial to metric unit conversions. Align-
ment, numeric formatting, and simple expressions are all used here to gener-
ate the nicely formatted text data in the comment block that follows. Note the
shorthand number format on the last line of the method.

To find out more about string interpolation, search online for "c# string interpolation".

StringBuilder
C# strings have immutable length (much like arrays), so any time you concatenate
two strings together, a completely new string is created, and the characters from each
of the two concatenated strings are copied there. This creates a lot of extra copying and
memory allocation that must then be cleaned up by C# garbage collection, all of which
is inefficient. The System.Text.StringBuilder class avoids many of these issues,
so it is preferable in instances when you plan to concatenate several strings together.
Though I don't use StringBuilders much in this book, I use them very frequently in my
coding, especially when creating long logs while debugging. Code Listing B.25 shows
an example of how to use a StringBuilder to generate tabbed output that can be pulled
into a spreadsheet.

Code Listing B.25  StringBuilderExample.cs

| using UnityEngine;
|
| public class StringBuilderExample : MonoBehaviour {
> [Header("Inscribed")]
> public int gridSize = 32;	 // a
> public float perlinZoom = 0.15f;	 // b
|
> [Header("Dynamic")]
> public bool clickToGenerate = false;
|
> private System.Text.StringBuilder sb;	 // c

Z02_Bond_App-B_p001-102.indd 45 10/06/22 8:55 PM

46	 Appendix B  Useful Concepts

|
| void Start() {
> clickToGenerate = false;
> sb = new System.Text.StringBuilder();	 // d
| }
|
| void Update() {
> if (!clickToGenerate) return;
>
> sb.Clear();	 // e
> sb.Append("Perlin Noise output for perlinZoom=");	 // f
> sb.AppendLine(perlinZoom.ToString("0.00")); // The 0s are zeros	 // g
> float u;
> int num;
> for (int x = 0; x < gridSize; x++) {
> for (int y = 0; y < gridSize; y++) {
> u = Mathf.PerlinNoise(x * perlinZoom, y * perlinZoom);	 // h
> sb.Append($"{u:0.00}"); // String interpolation	 // g
> sb.Append('\t');	 // i
> }
> sb.AppendLine();	 // j
> }
>
> Debug.Log(sb.ToString()); 	 // k
>
> clickToGenerate = false;
| }
| }

a.	 gridSize determines the size of the output. The default value of 32 will gener-
ate a grid of output that is 32 columns by 32 rows.

b.	 Unity's Mathf.PerlinNoise() method always returns the same value for all
integer numbers, so perlinZoom is multiplied by the x and y iterators on line
// h to avoid lining up with integer numbers. A perlinZoom value of 1 would
return 0.47 for every cell.

c.	 You could add using System.Text; to the top of this script, but because
StringBuilder is the only thing that I use from the System.Text library, I prefer to
fully qualify StringBuilder (i.e., to write System.StringBuilder) here and on
line // d rather than import the entirety of System.Text.

d.	 Because StringBuilders can easily be cleared and reused, I often use only one
instance.

e.	 sb.Clear() empties the StringBuilder, preparing it for reuse.

f.	 sb.Append() appends the string to the StringBuilder. Each string appended to
the StringBuilder is inserted into to a preallocated char[] array, so no copying

Z02_Bond_App-B_p001-102.indd 46 10/06/22 8:55 PM

	 C# and Unity Coding Concepts	 47

or reallocation of memory needs to occur. If the characters added exceed the
size of the array, the StringBuilder then allocates another char[] array of the
same size and starts filling it with the additional characters.

g.	 A call to sb.AppendLine() is identical to sb.Append() except that it also adds a
newline sequence ("\n" on macOS and Linux or "\r\n" on Windows) to the end.

	 The "0.00" in perlinZoom.ToString("0.00") tells C# to convert the float
value of perlinZoom to a string with one whole number, a decimal point, and
then two places after the decimal. This avoids extremely long numbers in the
string output, which I find helps me read the output much more easily. You can
also see the string interpolation version of this same string formatting at the
// g, a few lines later in the code.

h.	 The Mathf.PerlinNoise() method returns a float value (usually) between 0
and 1 at the given 2D location.

i.	 sb.Append() can also take a single char as input.

j.	 sb.AppendLine() can be called with no parameter to just insert a newline.

k.	 When sb.ToString() is called, the char[] arrays are finally concatenated
together into a string.

To test this code, attach it to a GameObject in Unity, click Play, and then click the
clickToGenerate check box. One of the major benefits of separating log values with tabs
is that you can then easily copy and paste them into Google Sheets, as you can see in
Figure B.6.

Figure B.6  Output from the StringBuilderExample code with default values copied into Google
Sheets with ColorScale Conditional Formatting applied in Sheets

Z02_Bond_App-B_p001-102.indd 47 10/06/22 8:55 PM

48	 Appendix B  Useful Concepts

Check out Chapter 28, "Data-Oriented Design," for a much more interesting use of
Perlin noise.

Structs
A struct is similar to a class, but it includes no inheritance or polymorphism,12 and as
a result, all the data in a struct can be stored together in memory, in the same place,
as long as each field in the struct is blittable. There is much more to learn about what
makes data blittable, but the easiest way I have found to think about it is that data is blit-
table if it can be stored as one chunk in one place in memory.13 So, it makes sense that a
struct composed of only blittable data is also blittable itself. Classes are never blittable.

Because data locality (having the data you need all stored close together in computer
memory) is central to Data-Oriented Design (DOD), structs are used extensively in DOD
and especially in making the components of Entity Component Systems (ECS). Please
read more about all of these concepts in Chapter 28, "Data-Oriented Design." You
can also find out more about structs and how they are used in C# at the Microsoft C#
Documentation14 page, and several examples can be found by searching for "C# struct"
online.

Unity Messages Beyond Start() and Update()
Unity has several messages that it sends to MonoBehaviour subclasses. The ones you're
most familiar with are Awake(), Start(), Update(), FixedUpdate(), and the various
collision messages, but there are many more. Here are some of the most useful ones.

12.	In its most basic sense, polymorphism describes the ability of a C# subclass to either run
the base class version of a method or to override that base method with its own version. For
example, in Code Listing B.12, the virtual public void Move() method on Droid is
overridden by the override public void Move() method on TurboDroid, and then the
overriding Move() method on TurboDroid uses base.Move() to call the base class version
of Move() that is defined in Droid.

13.	A more accurate definition that I have found of blittable is: A variable type is blittable if it is
stored the same way in both managed and unmanaged memory. Managed heap memory is
automatically allocated by C# and then automatically reclaimed by garbage collection; man-
aged memory is easier to work with but it becomes fragmented and is slower than unman-
aged stack memory.

14.	https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/struct —
accessed August 25, 2021.

Z02_Bond_App-B_p001-102.indd 48 10/06/22 8:55 PM

	 C# and Unity Coding Concepts	 49

Life-Cycle Messages
Life-cycle messages are called at specific events as the GameObject or individual script is
created, made active or inactive (GameObject), enabled or disabled (script), destroyed,
or reset.

■■ Awake(): Called when the script is instantiated

■■ Start()°: Called immediately before the first Update() is called on a script; as
such, it always happens after Awake() and before the first Update()

■■ OnEnable()°: Called only during play mode when this script is enabled or the
GameObject it is attached to is made active

■■ OnDisable()°: Called only during play mode when this script is disabled or the
GameObject it is attached to is made inactive

■■ OnDestroy(): Called when this script or GameObject will be destroyed

■■ Reset(): Called in the Unity Editor when Reset is chosen from the three vertical dot
( 

…

) pop-up menu in the top-right of this script Component in the Inspector

Frame-Based Messages
Frame-based messages are called every time a frame is drawn to the screen.

■■ Update()°: Called every frame

■■ LateUpdate()°: Called every frame after Update() has been called on all
GameObjects

■■ OnDrawGizmos()∞: Called every frame and editor frame (i.e., when the Scene or
Game view is updated in the Editor) to draw gizmos to screen for debugging
(gizmos are only drawn in the Unity Editor, not in builds)

note
LEGEND OF SYMBOLS AFTER THE NAMES OF VARIOUS MESSAGES 
Legend symbols include the following:

■■ ° This message is not called if the script is disabled (i.e., if the check
box next to the script component name in the Unity Inspector is
unchecked). The check box to enable/disable a script only appears if
one of these ° messages is implemented in the script.

■■ ∞ This message is called both in Play mode and also every editor
frame. Editor frames occur when the Scene or Game view is
updated in the Editor. If nothing in either view is changing, it can
be several seconds between editor frames.

Z02_Bond_App-B_p001-102.indd 49 10/06/22 8:55 PM

ptg39131280

50	 Appendix B  Useful Concepts

■■ OnDrawGizmosSelected()∞: Called every frame and editor frame to draw gizmos if
this GameObject is currently selected in the Editor

■■ OnGUI()°: This is called to draw Unity's IMGUI (Immediate Mode Graphical User
Interface, where the GUI is redrawn from scratch at least once every frame), but it
is very rarely used now. However, it could still be good for testing and quick proto-
types as well as some Editor scripts (e.g., older-style PropertyDrawer scripts).

Physics-Based Messages
All physics system messages are called every physics frame (i.e., every time the physics
system updates) immediately after FixedUpdate() is called. Note that all of these
except for FixedUpdate() are still called even if the script is disabled.

■■ FixedUpdate()°: Called every physics frame (i.e., every time the physics system
updates) if the script is enabled

■■ OnCollision Messages – Collision of one Collider with another Collider:
If two Colliders touch, and both have isTrigger = false, these messages will be
called. Note that the parameter passed with all of these messages is a Collision
that includes information about contact points, relative velocity, etc.

■■ OnCollisionEnter(Collision collision): Called on the physics frame
when the Collider of this GameObject begins touching a Collider of another
GameObject

■■ OnCollisionStay(Collision collision): Called on every physics frame
that the Collider of this GameObject continues touching a Collider of another
GameObject (this is first called on the physics frame after OnCollisionEnter()
was called, if the Colliders are still touching)

■■ OnCollisionExit(Collision collision): Called on the physics frame when
the Collider of this GameObject has stopped touching a Collider of another
GameObject

■■ OnTrigger Messages – Collision of one Trigger with another Trigger or
Collider: If two Colliders touch, and either or both have isTrigger = true, these
messages will be called. Note that the parameter passed with all of these is the other
Collider, so there is no information about contact points, relative velocity, etc.

■■ OnTriggerEnter(Collider collider): Called on the physics frame when the
Collider of this GameObject begins touching a Collider of another GameObject

■■ OnTriggerStay(Collider collider): Called on every physics frame
that the Collider of this GameObject continues touching a Collider of
another GameObject (this is initially called on the next physics frame after
OnTriggerEnter() was called, if the Colliders are still touching)

ptg39131280

C# and Unity Coding Concepts	 51

■■ OnTriggerExit(Collider collider): Called on the physics frame when
the Collider of this GameObject has stopped touching a Collider of another
GameObject

■■ Mouse Interaction: These messages are called when the mouse interacts with a
Collider of a GameObject (or an Immediate Mode GUI object). In all of these cases,
the mouse overlap is checked against the Colliders in 2D screen space.

■■ OnMouseEnter(): Called on the physics frame when the mouse enters a Collider
of this GameObject

■■ OnMouseOver(): Called on every physics frame that the mouse is over a Collider
of this GameObject

■■ OnMouseExit(): Called on the physics frame when the mouse exits a Collider of
this GameObject

■■ OnMouseDown(): Called if the player presses the primary mouse button down
while the mouse is over a Collider of this GameObject

■■ OnMouseDrag(): Called every physics frame that the player holds the primary
mouse button down while the mouse is over a Collider of this GameObject

■■ OnMouseUp(): Called if the player releases the primary mouse button while the
mouse is over a Collider of this GameObject

■■ OnMouseUpAsButton(): Called if the player presses and then releases the pri-
mary mouse button while the mouse is over a Collider of this GameObject. You
should use OnMouseUpAsButton() when you want to be sure that the player
pressed and then released the mouse button over the same GameObject.

■■ Physics2D Messages: There are also 2D versions of all the OnCollision and
OnTrigger messages in the preceding list that are called by Unity's 2D physics
system, but I felt it a bit redundant to list them all here. Examples include:

■■ OnCollisionEnter2D(Collision2D collision)
■■ OnTriggerStay2D(Collider2D collider)

Several more Unity messages can be found on the Unity API documentation page for
the MonoBehaviour class.15 You can also see a list of them in Visual Studio:

■■ macOS: From the Visual Studio menu bar, choose Edit > Add Unity Event Functions…
or press Command-Shift-M to open a window that lists every Unity Message along
with a brief description.

■■ Windows: Press Ctrl+Shift+M to open a slightly less helpful window than in macOS
that lists every Unity message but has no description of them.

15. At https://docs.unity3d.com/2020.3/Documentation/ScriptReference/MonoBehaviour.html
under the "Messages" heading.

https://docs.unity3d.com/2020.3/Documentation/ScriptReference/MonoBehaviour.html

ptg39131280

52	 Appendix B  Useful Concepts

For more information on when these various MonoBehaviour messages are called, you
can check out Unity's documentation at:

https://docs.unity3d.com/2020.3/Documentation/Manual/ExecutionOrder.html

Variable Scope
The scope of variables is an important concept in any programming language. A vari-
able's scope refers to how much of the code is aware of the variable's existence. Global
scope means that any code anywhere can see and reference the variable, whereas local
scope means that the variable's scope is limited in some way, and it can't be seen by
everything in the code. If a variable is local to a class, then only other things within the
class can see it. If a variable is local to a function, then it only exists within that function
and is destroyed when the function has completed.

The ScopeExample class in Code Listing B.26 demonstrates several different levels of
scope for variables within a single class. Lettered comments after the code explain what
is happening on important lines. A variable that is maroon in the code indicates that it is
out of scope in that section of the code.

Code Listing B.26  ScopeExample.cs

| using UnityEngine;
|
| public class ScopeExample : MonoBehaviour {
> // public fields (public class variables)
> public bool trueOrFalse = false;	 // a
> public int graduationAge = 18;
> public float goldenRatio = 1.618f;
|
> // private fields (private class variables)
> private bool _hiddenVariable = true;	 // b
> private float _anotherHiddenVariable = 0.5f;
|
> // protected fields (protected class variables)
> protected int partiallyHiddenInt = 1;	 // c
> float anotherProtectedVariable = 1.0f;
|
> // static public fields (static public class variables)
> static public int NUM_INSTANCES = 0;	 // d
> static private int NUM_TOO = 0;	 // e
|
> protected bool hiddenVariableAccessor { // f
> get { return _hiddenVariable; }
> }
|

https://docs.unity3d.com/2020.3/Documentation/Manual/ExecutionOrder.html

ptg39131280

C# and Unity Coding Concepts	 53

> void Awake() {
> trueOrFalse = true; // OK: assigns "true" to trueOrFalse	 // g
> print("tOF: " + trueOrFalse); // OK: prints "tOF: True"
> int ageAtTenthReunion = graduationAge + 10; // OK // h
> print("_aHV: " + _anotherHiddenVariable); // OK: prints "_aHV: 0.5" // i
> NUM_INSTANCES += 1; // OK	 // j
> NUM_TOO++; // OK	 // k
> }
|
| void Update() {
> print(ageAtTenthReunion); // ERROR	 // l
> float ratioed = 1f; // OK
> for (int i=0; i<10; i++) { // OK	 // m
> ratioed *= goldenRatio; // OK
> }
> print("ratioed: " + ratioed); // OK: prints "ratioed: 122.9661"
> print(i); // ERROR	 // n
| }
| }

a. Public fields: The variables trueOrFalse, graduationAge, and goldenRatio
are all public fields. Fields are class instance variables, meaning that they are
declared as part of the class and are visible to all functions within any instance
of that class. Because these fields are public, they are inherited by the
subclass ScopeExampleSubclass (in Code Listing B.27), which means that
ScopeExampleSubclass also has a bool trueOrFalse. Public variables can
also be seen by any other code that has a reference to an instance of the class.
This would allow a function with the variable ScopeExample se to see and
set the field se.trueOrFalse.

b. Private fields: These two variables are private fields. Private fields can only
be seen by this instance of ScopeExample (meaning that an instance of
ScopeExample can access and modify its own private fields, but no other
instance can see them). Subclasses do not inherit private fields, so the subclass
ScopeExampleSubclass does not have a bool _hiddenVariable. A function
with the variable ScopeExample se would not be able to see or access the
private field se._hiddenVariable.

c. Protected fields: A field marked protected is between public and private (in
terms of access level), and all fields are protected by default unless they are
explicitly marked private or public. Subclasses do inherit protected fields, so
the subclass ScopeExampleSubclass in Code Listing B.27 does inherit the int
partiallyHiddenInt that is declared in ScopeExample. However, anything
outside of the ScopeExample class or subclasses thereof would not be able to
see or access the protected field se.partiallyHiddenVariable.

ptg39131280

54	 Appendix B  Useful Concepts

d. Static fields: A static field is a field that is shared by the entire class, not the
instances of the class. This means that NUM_INSTANCES is accessed as
ScopeExample.NUM_INSTANCES. Public static fields are the closest thing to
global scope that I use in C#. Any script in the codebase can access the field
public static ScopeExample.NUM_INSTANCES, and the value of
NUM_INSTANCES is shared by all instances of ScopeExample. A function
with the variable ScopeExample se could not access se.NUM_INSTANCES
(because it doesn't exist), but it could access ScopeExample.NUM_INSTANCES.
The ScopeExampleSubclass subclass of ScopeExample can also access NUM_
INSTANCES. Within an instance of ScopeExample, NUM_INSTANCES can
be accessed directly (without the "ScopeExample." prefix).

e. NUM_TOO is a private static field, which means that all instances of
ScopeExample share the same value of NUM_TOO, but no other class can see
it or access it. The subclass ScopeExampleSubclass cannot access NUM_TOO.

f. hiddenVariableAccessor is a read-only public property that allows other
classes access to _hiddenVariable. Because there is no set clause, it is
read-only.

g. The // OK comment means that this line executes without any errors.
trueOrFalse is a public field of ScopeExample, so this method of
ScopeExample can access it.

h. This line declares and defines a variable named ageAtTenthReunion that is
locally scoped to the method ScopeExample.Awake(). This means that when
the ScopeExample.Awake() function has finished executing, the variable
ageAtTenthReunion will cease to exist. Also, nothing outside of this function
can access or modify ageAtTenthReunion.

i. As a private field _anotherHiddenVariable can only be seen by methods
within instances of this class.

j. Within a class, static public fields can be referred to by their name, meaning
that the ScopeExample.Awake() method can reference NUM_INSTANCES
without needing the class name before it.

k. NUM_TOO can also be accessed anywhere within the ScopeExample class.

l. The // ERROR comment means that this line will not run properly. This line
throws an error because ageAtTenthReunion was a local variable of the
method ScopeExample.Awake(), so it has no meaning in the ScopeExample.
Update() method.

m. The variable int i is declared and defined in this for loop and is locally scoped
to the for loop. This means that i ceases to have meaning when the for loop
has completed.

ptg39131280

C# and Unity Coding Concepts	 55

n. This line throws an error because i has no meaning outside of the preceding
for loop.

ScopeExampleSubclass in Code Listing B.27 extends the ScopeExample class, dem-
onstrating how class inheritance can affect scope (public and protected fields can be
seen by subclasses, but private fields cannot).

Code Listing B.27  ScopeExampleSubclass.cs

| using UnityEngine;
|
> public class ScopeExampleSubclass : ScopeExample { // a
| void Start() {
> print("tOF: " + trueOrFalse); // OK: prints "tOF: True"	 // b
> print("pHI: " + partiallyHiddenInt); // OK: prints "pHI: 1"	 // c
> print("_hV: " + _hiddenVariable); // ERROR	 // d
> print("NI: " + NUM_INSTANCES); // OK: prints "NI: 1"	 // e
> print("NT: " + NUM_TOO); // ERROR	 // f
> print("hVA: " + hiddenVariableAccessor); // OK: prints "hVA: True" // g
| }
| }

a. This line declares and defines ScopeExampleSubclass as a subclass of
ScopeExample. As a subclass, ScopeExampleSubclass has access to the
public and protected fields and methods of ScopeExample but not to the
private fields or methods. Because the Awake() and Update() methods
of ScopeExample were not explicitly declared public or private, they are
by default protected and therefore inherited by ScopeExampleSubclass.
Because ScopeExampleSubclass does not have its own Awake() or
Update() functions defined, it will run the versions defined in its base class,
ScopeExample. And, when those ScopeExample methods run, they will also
print to the Console (or they would if there were no errors in them).

b. trueOrFalse is public, so ScopeExampleSubclass has inherited a
trueOrFalse field. Additionally, because the base class (ScopeExample)
version of Awake() has already run by the time Start() is called on
ScopeExampleSubclass, trueOrFalse has already been set to true by the
Awake() method.

c. ScopeExampleSubclass also has a protected partiallyHiddenInt field that
is inherited from ScopeExample.

d. _hiddenVariable is not inherited from ScopeExample because it is private.

e. NUM_INSTANCES is accessible by ScopeExampleSubclass because as a public
variable, it is inherited from the base class ScopeExample. The two classes
share the same value for NUM_INSTANCES, so if an instance of each class were

56	 Appendix B  Useful Concepts

instantiated, the value of NUM_INSTANCES would be 2 regardless of whether it
was accessed from ScopeExample or ScopeExampleSubclass.

f. As a private static variable, NUM_TOO is not inherited by
ScopeExampleSubclass. However, it's worth noting that even though
NUM_TOO is not inherited, when ScopeExampleSubclass is instantiated and
calls the base class version of Awake()—that is, the Awake() method that is
defined in the ScopeExample base class—that call to the Awake() method
can access NUM_TOO without errors, because the base class version is running
within the scope of the ScopeExample base class even though it's actually
running on an instance of ScopeExampleSubclass.

g. In our most esoteric example, ScopeExampleSubclass can read the public
property hiddenVariableAccessor, which easily makes sense until you look
a bit deeper. Inside of the get clause of hiddenVariableAccessor, it reads
the private field _hiddenVariable. This is a subtle but important aspect of
variable scope. Because ScopeExampleSubclass extends ScopeExample, all
the private fields of ScopeExample are created for a ScopeExampleSubclass
instance, even though the ScopeExampleSubclass instance can't access them
directly. The ScopeExampleSubclass instance can use public accessors like
hiddenVariableAccessor—which is scoped to the ScopeExample base class—
to access private fields (like _hiddenVariable) that are also scoped to the
ScopeExample base class. Inherited methods like the Awake() that
ScopeExampleSubclass inherited from ScopeExample can also access
private fields of the base class.

These many notes have included both very simple and very complex examples of vari-
able scope. If some of it didn't make sense to you, that's okay. You can come back and
read it later after you've used C# some more and have more specific scope questions.

XML
XML (eXtensible Markup Language) is a file format that is designed to be both flexible
and human-readable. In the first two editions of this book, XML was used to define the
cards in the deck and the layout of the tableau in the Prospector Solitaire game from
Chapters 33 and 34. I find XML to be much more easily read by humans, but the ease of
use of the integrated JSONUtility class in Unity prompted me to switch to JSON for this
third edition.

XML Listing B.28 shows the XML version of the JSON_Deck.js file that you can see in
JSON Listing B.15. Additional spaces have been added to the XML in B.28 to make it a
little more readable, but that is okay because XML generally treats any number of spaces
or line breaks as a single space. I've also included the XML_Deck.xml and XML_Layout.
xml files in the UnityPackage that you download at the beginning of the Prospector

Z02_Bond_App-B_p001-102.indd 56 10/06/22 8:55 PM

	 C# and Unity Coding Concepts	 57

Solitaire project, so you can open those and compare them with the JSON versions. (The
syntax coloring in XML Listing B.27 is the same as that for XML files opened in Visual
Studio Code, which I find to be excellent for opening and editing XML files.)

XML Listing B.28  XML_Deck.xml Showing the Same Data as JSON_Deck.json

<xml>
 <!-- decorators are the suit and rank in the corners of every card. -->
 <decorator type="letter" x="-1.05" y="1.42" z="0" flip="0" scale="1.25" />
 <decorator type="suit" x="-1.05" y="1.03" z="0" flip="0" scale="0.4" />
 <decorator type="suit" x="1.05" y="-1.03" z="0" flip="1" scale="0.4" />
 <decorator type="letter" x="1.05" y="-1.42" z="0" flip="1" scale="1.25" />
 <!-- A list of all cards that defines where pips are placed. -->
 <card rank="1">
 <pip x="0" y="0" z="0" flip="0" scale="2" />
 </card>
 <card rank="2">
 <pip x="0" y="1.1" z="0" flip="0" />
 <pip x="0" y="-1.1" z="0" flip="1" />
 </card>
 <card rank="3">
 <pip x="0" y="1.1" z="0" flip="0" />
 <pip x="0" y="0" z="0" flip="0" />
 <pip x="0" y="-1.1" z="0" flip="1" />
 </card>
 <!-- Cards of rank 4-12 are skipped here-->
 <!-- face references the name of the Sprite to be shown on face cards. -->
 <card rank="13" face="FaceCard_13" />
</xml>

Even without knowing much at all about XML, you should be able to read this some-
what. XML is based on tags (also known as the markup of the document), which are the
words between the two angle brackets (e.g., <xml>, <card rank="2">). Most XML
elements have an opening tag (e.g., <card rank="2">) and a closing tag that contains
a forward slash immediately after the opening angle bracket (e.g., </card>). Anything
between the opening and closing tags of an element is said to be the content of that
element (e.g., the <pip …/> tags between the <card> and </card> in the XML listing
are the content of that <card>). There are also empty-element tags, which are tags that
serve as both the opening and closing tag with no content between them. For example,
in the XML listing, the tag <pip x="0" y="1.1" z="0" flip="0" /> is an empty-
element tag that requires no matching </pip> tag because it ends in />. In general,
XML files should start with <xml> and end with </xml>, so everything in the XML
document is content of the <xml> element.

XML tags can have attributes, which are like fields in C#. The empty-element
<pip x="0" y="1.1" z="0" flip="0" /> that is seen in the XML listing includes
x, y, z, and flip attributes.

Z02_Bond_App-B_p001-102.indd 57 10/06/22 8:55 PM

58	 Appendix B  Useful Concepts

In an XML file, anything between <!-- and --> is a comment and is therefore ignored
by any program that is reading the XML file. In XML Listing B.28, you can see that I use
them the same way that I use comments in C# code.

A robust XML reader is included in C# .NET, but I have found it to be very large (it adds
about 1 MB to the size of your compiled application, which is a lot if you're making
something for mobile or WebGL) and unwieldy (using it is not simple). Though we
no longer use it in the Prospector Solitaire tutorial, I've included a simple XML inter-
preter called PT_XMLReader in the ProtoTools scripts that are part of the unitypackage
imported at the beginning of the later prototyping chapters. PT_XMLReader is not at all
as robust as the .NET implementation, but it is tiny. Comments in the PT_XMLReader.cs
file explain its use.

XML Documentation in C#
One excellent use of XML in Unity and C# is XML Documentation, which allows you to
add documentation to your functions, classes, structs, methods, and so on that can be
read and shown by Visual Studio. Code Listing B.29 shows several examples.

Code Listing B.29  C# XML Documentation in Utils.cs with XML Tags Bolded

/// <summary>
/// This two-dimensional array version of a Bézier curve solver is the most
/// performant I've developed so far that can handle any number of points.
/// <para>LerpUnclamped is used to allow for extrapolation.</para>
/// </summary>
/// <param name="u">The amount of interpolation [0..1]</param>
/// <param name="arr">A params array of points to interpolate</param>
/// <returns>The interpolated value</returns>
static public Vector3 Bezier(float u, params Vector3[] arr) {…}	 // a

/// <summary>
/// This overload converts the List <paramref name="pts"/> to an array and calls
/// <see cref="Bezier(float, Vector3[])">Bezier()</see>.
/// </summary>
/// <param name="u">The amount of interpolation [0..1]</param>
/// <param name="pts">A List of points to interpolate</param>
/// <returns>The interpolated value</returns>
static public Vector3 Bezier(float u, List<Vector3> pts) {…}	 // b

/// <summary>
/// <para>While most Bézier curves are 3 or 4 points, it is possible to have
/// any number of points using this recursive function.</para>
/// <para>This has been replaced by <see cref="Bezier(float, Vector3[])">
/// Bezier()</see>, a faster array-based version.</para>

Z02_Bond_App-B_p001-102.indd 58 10/06/22 8:55 PM

	 C# and Unity Coding Concepts	 59

/// <para>LerpUnclamped is used to allow extrapolation.</para>
/// </summary>
/// <param name="u">The amount of interpolation [0..1]</param>
/// <param name="pts">A List of points to interpolate</param>
/// <param name="iL">Index of the left extent of the used elements of pts.
/// Defaults to 0.</param>
/// <param name="iR">Index of the right extent of the used elements of pts.
/// Defaults to -1, which is changed to the last element's index.</param>
/// <returns>The interpolated value</returns>
static public Vector3 BezierR(float u,List<Vector3> pts,int iL=0,int iR=-1) {…}	 // c

Figure B.7 shows the effects of these XMLDoc tags when the developer hovers their
mouse over the name of each function in Visual Studio (macOS). The a, b, and c labels in
Figure B.7 match // a, // b, and // c in Code Listing B.29.

Figure B.7  XMLDoc pop-ups for the // a, // b, and // c functions in Code Listing B.29

Some of the tags you see here are :

■■ <summary>: Text between the summary tags is the primary content shown and
should describe the function.

■■ <para>: The para tags encapsulate a paragraph, causing a new line in the pop-up.

■■ <param name="u">: These allow you to define help text for each parameter.

■■ <see cref="Bezier(float, Vector3[])">: The see tag allows you to create
links to other functions within your summary description.

■■ <returns>: Allows you to describe the return value of the function (if it's not void).

Z02_Bond_App-B_p001-102.indd 59 10/06/22 8:55 PM

60	 Appendix B  Useful Concepts

Additional options are listed in the Microsoft documentation for XMLDoc,16 but some of
them do not work properly in Visual Studio for Mac.

Math Concepts
A lot of people cringe when they hear the word math, but that really doesn't need to be
the case. As you'll see throughout this book, it can do some really cool things for you. In
the following sections, I cover just a few cool math concepts that can help you in game
development.

Cosine and Sine (Cos and Sin)
Sine and cosine are functions that convert an angle value Θ (theta) into a point along a
wave shape that ranges in the y dimension from -1 to 1. They are shown in Figure B.8.

Figure B.8  The traditional representations of sine and cosine

16.	https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/xmldoc/
recommended-tags — accessed August 27, 2021.

Z02_Bond_App-B_p001-102.indd 60 10/06/22 8:55 PM

	 Math Concepts	 61

However, sine and cosine are much more than just waves; they're descriptions of the
relationship of x and y when going around a circle. I'll demonstrate what I mean with
some code.

Unity Example—Sine and Cosine
The following steps will create a visualization that I think does an excellent job of
showing the relationship between sine, cosine, and circular movement.

1.	 Create a new Unity project named Sine and Cosine based on the 3D Core template
and create a new Basic scene named _Scene_Cyclic.

2.	 At the top of the Scene pane, use the Effects Toggle pop-up to turn off the default
Skybox (i.e., the Skybox option should not be checked, as shown in Figure B.9a). This
will make the background of the Scene pane a dark gray.

3. 	 Give the Main Camera the settings shown highlighted in Figure B.9b.

4.	 Click the Gizmos button in the top-right corner of the Game pane until it is
highlighted. This will enable the OnDrawGizmos() call in Code Listing B.30 to
draw to the Game pane (in addition to the Scene pane).

5. 	 Create a new sphere in the scene (GameObject > 3D Object > Sphere). Set Sphere's
transform to P:[0, 0, 0], R:[0, 0, 0], S:[0.1, 0.1, 0.1] as shown in Figure B.9c
(the figure does not show the Sphere (Mesh Filter), Mesh Renderer, or Sphere
Collider components, but please do not delete them).

6. 	 Add a TrailRenderer to Sphere and give it the settings shown highlighted in Figure B.9c.

a.	 Select Sphere in the Hierarchy and choose Component > Effects > Trail Renderer
from the menu bar.

b.	 Set Width = 0.10 (this setting is at the top-left of the graph area).

c.	 Set Time = 1.

d.	 Open the disclosure triangle next to Materials in the Sphere's TrailRenderer
Inspector and click the circular target to the right of Element 0 to select
Default-Particle as the texture for the TrailRenderer.

7.	 Create a new C# script named Cyclic.

a.	 Attach the Cyclic script to the Sphere GameObject in the Hierarchy.

b.	 Open the Cyclic script in Visual Studio, and enter the code in Code Listing B.30.

Z02_Bond_App-B_p001-102.indd 61 10/06/22 8:55 PM

62	 Appendix B  Useful Concepts

Figure B.9  Settings for the _Scene_Cyclic GameObjects

Code Listing B.30  Cyclic.cs — Exploring Sine and Cosine

| using UnityEngine;
|
| public class Cyclic : MonoBehaviour {
> [Header("Inscribed")]
> public float theta = 0; // The 0 here is a zero (not a theta symbol)
> public bool showCosAsX = false;
> public bool showSinAsY = false;
|
> [Header("Dynamic")]
> public Vector3 pos;
|
| void Update() {
> // Calculate radians based on time
> float radians = Time.time * Mathf.PI;
>

Z02_Bond_App-B_p001-102.indd 62 10/06/22 8:55 PM

	 Math Concepts	 63

> // Convert radians to degrees to show in the Inspector
> // The "% 360" limits the value to the range: 0 to 359.9999
> theta = Mathf.Round(radians * Mathf.Rad2Deg) % 360;
> // Reset pos
> pos = Vector3.zero;
> // Calculate x & y based on cos and sin respectively
> pos.x = Mathf.Cos(radians);
> pos.y = Mathf.Sin(radians);
>
> // Use sin and cos if they are checked in the Inspector
> Vector3 tPos = Vector3.zero;
> if (showCosAsX) tPos.x = pos.x;
> if (showSinAsY) tPos.y = pos.y;
> // Position this.gameObject (the Sphere)
> transform.position = tPos;
| }
|
> void OnDrawGizmos() {
> if (!Application.isPlaying) return;// Only show when Playing
>
> // Draw wavy rainbow lines showing the sin and cos curves
> int inc = 10;
> for (int i = 0; i < 360; i += inc) {
> int i2 = i + inc;
> float c0 = Mathf.Cos(i * Mathf.Deg2Rad);
> float c1 = Mathf.Cos(i2 * Mathf.Deg2Rad);
> float s0 = Mathf.Sin(i * Mathf.Deg2Rad);
> float s1 = Mathf.Sin(i2 * Mathf.Deg2Rad);
> Vector3 vC0 = new Vector3(c0, -1.2f - (i / 360f), 0);
> Vector3 vC1 = new Vector3(c1, -1.2f - (i2 / 360f), 0);
> Vector3 vS0 = new Vector3(1.2f + (i / 360f), s0, 0);
> Vector3 vS1 = new Vector3(1.2f + (i2 / 360f), s1, 0);
>
> Gizmos.color = Color.HSVToRGB(i / 360f, 1, 1);
> Gizmos.DrawLine(vC0, vC1);
> Gizmos.DrawLine(vS0, vS1);
> }
>
> // Draw the lines and circles relative to the Sphere GameObject
> Gizmos.color = Color.HSVToRGB(theta / 360f, 1, 1);
> // Show individual Sin and Cos aspects using Gizmos
> Vector3 cosPos = new Vector3(pos.x, -1.2f - (theta / 360f), 0);
> Gizmos.DrawSphere(cosPos, 0.05f);
> if (showCosAsX) Gizmos.DrawLine(cosPos, transform.position);
>
> Vector3 sinPos = new Vector3(1.2f + (theta / 360f), pos.y, 0);
> Gizmos.DrawSphere(sinPos, 0.05f);
> if (showSinAsY) Gizmos.DrawLine(sinPos, transform.position);
> }
| }

Z02_Bond_App-B_p001-102.indd 63 10/06/22 8:55 PM

ptg39131280

64	 Appendix B  Useful Concepts

8. You can optionally set the Scene view to 2D by clicking the 2D button at the top of
the Scene pane. If you zoom in, this 2D view will give you a grid around the Sphere.

9. Click Play.

Initially, the Sphere doesn't move, but colored dots move along paths below and to
the right of the sphere (you may need to zoom out to see it all). The dot on the right
follows the wave defined by Mathf.Sin(theta), and the dot below follows the Mathf.
Cos(theta) wave.

If you check the box next to showCosAsX in the Sphere:Cyclic (Script) Inspector, Sphere
will start moving in the X direction following a cosine wave. You can see how the X
motion of Sphere is connected directly to the cosine motion of the bottom wave.

Uncheck showCosAsX and check showSinAsY. Now you can see how the Y motion of
Sphere is connected to the sine wave. If you check both showCosAsX and showSinAsY,
Sphere will move in the circle defined by combining X = cos(Θ) and Y = sin(Θ). A full
circle is 360°, or 2π radians (i.e., 2 * Mathf.PI).

This connection is also shown in Figure B.10, which uses similar colors to those in the
Unity example.

This is important because it means that you can use sine and cosine for all sorts of circular
or cyclic behavior! These properties of sine and cosine are used in the Chapter 32, "Space
SHMUP — Part 2," project to define wavy movement for the Enemy_1 enemy type and
to adjust the linear interpolation easing of the Enemy_2 type (see the "Interpolation"
section in this appendix for information about linear interpolation and easing).

Dice Probability Enumeration
Chapter 11, "Math and Game Balance," covered Jesse Schell's Rule 4 of probability:
Enumeration can solve difficult math problems. Here is a quick Unity program that
can enumerate all the possibilities for any number of dice with any number of sides.
However, beware that each die you add drastically increases the number of calculations
that must be done (e.g., 5d6 [five six-sided dice] take six times longer to calculate than
4d6 and 36 times longer to calculate than 3d6).

	 Math Concepts	 65

Figure B.10  The relationship of sine and cosine to a circle

Unity Example—Dice Probability
Follow these steps to create a program that will enumerate all possibilities for any
number of identical dice with any number of sides. The default for this code is 2d6 (two
six-sided dice). With these default values, the program will run through all possible rolls
of the two dice (e.g., 1|1, 1|2, 1|3, 1|4, 1|5, 1|6, 2|1, 2|2, … 6|5, 6|6) and track the sum of
the dice for each possibility.

1. 	 Start a new Unity project named Dice Probability based on the 3D Core template.

2.	 Create a new C# script named DiceProbability and attach it to the Main Camera in the
Scene pane. (The Main Camera settings will be handled in Awake() this time.)

3.	 Click the Gizmos button in the top-right corner of the Game pane until it is high-
lighted. This will enable the OnDrawGizmos() call in Code Listing B.31 to draw to
the Game pane.

Z02_Bond_App-B_p001-102.indd 65 10/06/22 8:55 PM

66	 Appendix B  Useful Concepts

4.	 Open DiceProbability in Visual Studio and enter the code in Code Listing B.31.

Code Listing B.31  DiceProbability.cs

| using System.Collections;
| using UnityEngine;
|
| public class DiceProbability : MonoBehaviour {
> [Header("Inscribed")]
> public int numDice = 2;
> public int numSides = 6;
> [Tooltip("Check this box in the inspector to begin rolling")]
> public bool checkToCalculate = false;
> [Tooltip("The CalculateRolls() coroutine yields after maxIterations rolls")]
> public int maxIterations = 10000;
> public float width = 16;
> public float height = 9;
|
> [Header("Dynamic")]
> public int[] dice; // An array of the values of each die
> public int[] rolls; // An array storing how many times a roll has come up
> // ^ For 2d6 this would be [0, 0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1],
> // meaning that a 2 was rolled once while a 7 was rolled 6 times.
|
> void Awake() {
> // Set up the main camera to properly display the graph
> Camera cam = Camera.main;
> cam.clearFlags = CameraClearFlags.SolidColor;
> cam.backgroundColor = Color.black;
> cam.orthographic = true;
> cam.orthographicSize = 5;
> cam.transform.position = new Vector3(8, 4.5f, -10);
> }
|
| void Update() {
> if (checkToCalculate) {
> StartCoroutine(CalculateRolls());
> checkToCalculate = false;
> }
| }
|
> void OnDrawGizmos() {
> float minVal = numDice;
> float maxVal = numDice*numSides;
>
> // If the rolls array is not ready, return
> if (rolls == null || rolls.Length == 0 || rolls.Length != maxVal+1) {
> return;
> }

Z02_Bond_App-B_p001-102.indd 66 10/06/22 8:55 PM

	 Math Concepts	 67

>
> // Draw the rolls array
> float maxRolls = Mathf.Max(rolls);
> float heightMult = 1f/maxRolls;
> float widthMult = 1f/(maxVal-minVal);
>
> Gizmos.color = Color.white;
> Vector3 v0, v1 = Vector3.zero;
> for (int i=numDice; i<=maxVal; i++) {
> v0 = v1;
> v1.x = ((float) i - numDice) * width * widthMult;
> v1.y = ((float) rolls[i]) * height * heightMult;
> if (i != numDice) {
> Gizmos.DrawLine(v0,v1);
> }
> }
> }
|
> public IEnumerator CalculateRolls() {
> // Calculate max value (the maximum possible value that could be rolled
> // on the dice (for example, for 2d6 maxValue = 12)
> int maxValue = numDice*numSides;
> // Make the array large enough to hold all possible values
> rolls = new int[maxValue+1];
>
> // Make an array with an element for each die. All are preset to a value
> // of 1 except for the first die which is set to 0 (to make the
> // method RecursivelyAddOne() work properly)
> dice = new int[numDice];
> for (int i=0; i<numDice; i++) {
> dice[i] = (i==0) ? 0 : 1;
> }
>
> // Iterate on the dice.
>
> int iterations = 0;
> int sum = 0;
>
> // Usually, I avoid while loops because they can lead to infinite loops,
> // but because this is a coroutine with a yield in the while loop, it's
> // not as big of a problem.
> while (sum != maxValue) {
> // ^ sum will == maxValue when all dice are at their maximum value
>
> // Increment the 0th die in the dice Array
> RecursivelyAddOne(0);
>
> // Sum all the dice together
> sum = SumDice();

Z02_Bond_App-B_p001-102.indd 67 10/06/22 8:55 PM

ptg39131280

68	 Appendix B  Useful Concepts

> // and add 1 to that position in the rolls array
> rolls[sum]++;
>
> // add to iterations and yield every 10,000 iterations (by default)
> iterations++;
> if (iterations % maxIterations == 0) {
> yield return null;
> }
> }
> print("Calculation Done");
>
> // Use StringBuilder to build complex strings (see earlier in Appendix B)
> System.Text.StringBuilder sb = new System.Text.StringBuilder();
> sb.AppendLine("Dice Rolls for " + numDice + "d" + numSides + ":");
> for (int i=numDice; i<=maxValue; i++) {
> // ToString("#,###") adds commas to separate each three digits
> sb.AppendLine(i + "\t" + rolls[i].ToString("#,##0"));
> }
>
> int totalRolls = 0;
> foreach (int i in rolls) {
> totalRolls += i;
> }
> sb.AppendLine("\nTotal Rolls: " + totalRolls.ToString("#,##0"));
>
> print(sb);
> }
|
> // This is a recursive method, meaning that it calls itself. You can read
> // about recursive methods more later in this appendix.
> public void RecursivelyAddOne(int ndx) {
> if (ndx == dice.Length) return; // We've exceeded the length of dice
> // Array, so just return
>
> // Increment the die at position ndx
> dice[ndx]++;
> // If this exceeds the capacity of the die...
> if (dice[ndx] > numSides) {
> dice[ndx] = 1; // then set this die to 1...
> RecursivelyAddOne(ndx+1); // and increment the next die
> }
> return;
> }
|
> public int SumDice() {
> // Sum the values of all the dice in the dice array
> int sum = 0;
> for (int i=0; i<dice.Length; i++) {
> sum += dice[i];

ptg39131280

Math Concepts	 69

> }
> return(sum);
> }
| }

5. To use the DiceProbability enumerator, click Play and then select Main Camera in the
Hierarchy pane.

6. In the Main Camera:Dice Probability (Script) Inspector, you can set numDice (the
number of dice) and numSides (the number of sides for each die) and then click
checkToCalculate to calculate the probability of any specific number coming up
on those dice (Unity must be playing for checkToCalculate to do anything).

Unity enumerates all the possible results and then outputs the results to the Console
pane as well as a graph in the Game pane (as long as you have Gizmos turned on in the
Game pane).

Try it first with the default setting of 2 dice of 6 sides each (2d6) and you'll get these
results in the console (you will have to click the message in the console to see more than
the first two lines):

Dice Rolls for 2d6:
2	 1
3	 2
4	 3
5	 4
6	 5
7	 6
8	 5
9	 4
10	 3
11	 2
12	 1

Total Rolls: 36

7. In the Inspector, try setting numDice=8 and numSides=6. Then check
checkToCalculate.

You'll see that this takes a lot longer to calculate and that the results (and the curve graph)
progressively update each time the coroutine yields (see the "Coroutines" section in this
appendix). To speed this up, try setting maxIterations=100,000.

maxIterations is the number of die rolls that the code will calculate before the coroutine
yields and allows Unity to show you the results. The more maxIterations you allow,
the faster the overall calculation will complete because the code will calculate more rolls
in between showing you results. Choosing fewer maxIterations will show you results
more frequently, but that will drastically slow down the overall time to calculate.

ptg39131280

70	 Appendix B  Useful Concepts

Now any time you want to know the probability of something like rolling a 13 or 28 on
8d6, you can figure it out through enumeration. The following are some salient lines
from the console output.

Dice rolls for 8d6:
8	 1
9	 8
…
12	 330
13	 792
14	 1,708
…
27	 133,288
28	 135,954 // 28 (the average roll) is 171.66 times more likely than a 13
29	 133,288
…
47	 8
48	 1

Total Rolls: 1,679,616

This means that the probability of rolling a 13 on 8D6 is 792 / 1,679,616 = 11 / 23,328 ≈
0.00047 ≈ 0.05%.

You could also modify this code to roll the dice a specified number of times and choose
random rolls each time. With a high number of rolls, this would give you a practical
probability instead of the theoretical probability that is currently produced (see Jesse
Schell's Rule 9 of probability in Chapter 11, "Math and Game Balance").

Using Data-Oriented Design to Improve the DiceProbability Code
The code in Code Listing B.31 was written for the first edition of this book, and it's hor-
ribly inefficient. On the other hand, even as inefficient as it is, it's millions of times faster
than calculating the dice by hand, so for what it is, it's fine. However, after you've read
Chapter 28, "Data-Oriented Design," I challenge you to come back to this code and
rewrite it from a DOD mindset. I'm certain that a multithreaded version would be sig-
nificantly faster, though you may need to schedule the jobs in multiple batches to avoid
halting other operations while this was calculating (which is why I used a coroutine in
the original code).

Dot Product
Another extremely useful math concept is the dot product. A dot product of two vec-
tors is the result of multiplying the respective X, Y, and Z components of each vector
together and adding the results, as shown in Code Listing B.32.

Math Concepts	 71

Code Listing B.32  Dot Product Calculation

> Vector3 a = new Vector3(1, 2, 3);
> Vector3 b = new Vector3(4, 5, 6);
> float dotProduct = a.x*b.x + a.y*b.y + a.z*b.z; // a
> // dotProduct = 1*4 + 2*5 + 3*6
> // dotProduct = 4 + 10 + 18
> // dotProduct = 32
> dotProduct = Vector3.Dot(a,b); // This is the best way to do it in Unity // b

a. A manual calculation of the dot product of Vector3s a and b.

b. The same calculation performed using the built-in static method Vector3.Dot().

At first, dot products might not seem very important, but they have an extremely useful prop-
erty: The float that the dot product a•b17 returns is equivalent to a.magnitude * b.magnitude
* Cos(Θ) where Θ is the angle between the two vectors, as shown in Figure B.11.

Figure B.11  Dot product examples (decimal numbers are approximate values)

17. The • symbol is used here (and commonly in math) to represent the dot product, as
opposed to the * that represents standard multiplication of floats and the × that represents a
cross product of two vectors.

Z02_Bond_App-B_p001-102.indd 71 10/06/22 8:55 PM

72	 Appendix B  Useful Concepts

Figure B.11a shows a standard example of a dot product. In this example, the unit
vector18 b is pointing along the X axis. b has the coordinates [1, 0], and vector a has the
coordinates [1, 1]. The a vector can be thought of as two parts: the part parallel to b
(the X coordinate of a, shown with the thin green line on top of b) and the part perpen-
dicular to b (the Y coordinate of a, shown with the dashed green line). The length of the
part of a that is parallel to b is known as the projection of a onto b and is the result of the
dot product a•b. The dot product takes the whole of a [1, 1], which has a length equal
to the square root of 2 (≈1.414) and tells us how much of that vector is parallel to b. As
mentioned previously, there are two different ways to calculate a dot product, both of
which are shown in Figure B.11a and both of which give us the result of 1. This means
that the length of vector a when projected onto unit vector b is 1.

Figure B.11b shows that when two vectors are completely perpendicular, their dot prod-
uct is zero. So here the projection of a onto b is zero.

Figure B.11c shows the projection of a longer vector a onto b. Here again, both versions
of the dot product calculation give us the same correct result.

Figure B.11d shows how a dot product can also be used to tell whether an enemy is
facing the player character (which can be useful in stealth games). Here, vector a is
[–3,2] and b is [1,0]. The dot product a•b is –3. If the enemy is looking in the b direc-
tion, and the dot product of projecting the vector to the player a onto unit vector b is
negative, then that means that the player is behind the enemy. Though all the examples
in Figure B.11 show b pointing along the X axis, the dot product still works perfectly
regardless of the direction in which b is pointing, as long as b is a unit vector.

You can use dot products in several other places as well, and its use is very common
in computer graphics programming (for instance, dot products are used to determine
whether a triangle is facing toward a light when calculating diffuse lighting).

Interpolation
An interpolation refers to any mathematical blending between two values. When I was
working as a contract programmer after college, I feel that one of the major reasons I
got a lot of job offers was because the motion of elements in my graphics code looked
smooth and juicy (to use Kyle Gabler's term19). This was accomplished through the use
of various forms of interpolation, easing, and Bézier curves, all of which I present in this
section of the appendix.

18.	A unit vector is a vector with a magnitude of 1 (i.e., a length of 1).

19.	"Juice It or Lose It" is a great 2012 talk by Matrin Jonasson and Petri Purho about adding
juiciness to games. You can try the link https://www.youtube.com/watch?v=Fy0aCDmgnxg
or just search for "juice it or lose it."

Z02_Bond_App-B_p001-102.indd 72 10/06/22 8:55 PM

	 Math Concepts	 73

Linear Interpolation
A linear interpolation is a way of mathematically defining a new value or position by
stating that it is in between two existing values. All linear interpolations follow the same
formula:

p01 = (1-u) * p0 + u * p1

The result of interpolating the points p0 and p1 is usually called p01. In code, this would
look something like Code Listing B.33.

Code Listing B.33  Basic Two-Point Interpolation

> Vector3 p0 = new Vector3(0, 0, 0);
> Vector3 p1 = new Vector3(1, 1, 0);
> float u = 0.5f;
>
> Vector3 p01 = (1 -u) * p0 + u * p1;
> Debug.Log(p01); // prints: (0.5, 0.5, 0), the point half-way between p0 & p1

In Code Listing B.33, a new point p01 is created by interpolating between the points p0
and p1. The value u ranges in value between 0 and 1. This can happen with any number
of dimensions, though you most often interpolate Vector2s and Vector3s in Unity.

Time-Based Linear Interpolations
In a time-based linear interpolation, you are guaranteed that the interpolation will com-
plete in a specific amount of time because the u value is based on the amount of time
that has passed divided by the total desired duration of the interpolation.

Unity Example—Time-Based Linear Interpolation
To create a Unity example, do the following:

1.	 Create a new Unity project named Interpolation using the 3D Core template.

2.	 Create a new scene based on the Built-in template and save the scene as _Scene_Interp.

3.	 Create a cube in the hierarchy (GameObject > 3D Object > Cube).

a.	 Select Cube in the Hierarchy pane and attach a TrailRenderer to it (Component >
Effects > Trail Renderer).

b.	 Open the Materials array of the TrailRenderer and set Element 0 to the built-in
material Default-Particle. (Click the circle to the right of Element 0 to see
Default-Particle in the list of available materials.)

4.	 Create a new C# script in the Project pane named Interpolator. Attach it to Cube and
then open it in Visual Studio to enter the code in Code Listing B.34.

Z02_Bond_App-B_p001-102.indd 73 10/06/22 8:55 PM

74	 Appendix B  Useful Concepts

Code Listing B.34  Interpolator.cs

| using UnityEngine;
|
| public class Interpolator : MonoBehaviour {
> [Header("Inscribed")]
> public Vector3 p0 = new Vector3(0, 0, 0);
> public Vector3 p1 = new Vector3(3, 4, 5);
> public float timeDuration = 1;
> [Tooltip("Set checkToStart to true to start moving.")]
> public bool checkToStart = false;
|
> [Header("Dynamic")]
> public Vector3 p01;
> public bool moving = false;
> public float timeStart;
|
| void Update() {
> if (checkToStart) {
> checkToStart = false;
>
> moving = true;
> timeStart = Time.time;
> }
>
> if (moving) {
> float u = (Time.time - timeStart) / timeDuration;
> if (u >= 1) { // If u >= 1, the move ends
> u = 1;
> moving = false;
> }
>
> // Here is the standard linear interpolation function
> p01 = (1 - u) * p0 + u * p1;
>
> transform.position = p01;
> }
| }
| }

5. 	 Switch back to Unity and click Play. In the Cube:Interpolator (Script) component, check
the box next to checkToStart, and Cube will move from p0 to p1 in 1 second. If you
adjust timeDuration to another value and then check checkToStart again, you can
see that Cube always moves from p0 to p1 in timeDuration seconds. You can also
change the location of p0 or p1 while Cube is moving, and it will update accordingly.

Z02_Bond_App-B_p001-102.indd 74 10/06/22 8:55 PM

	 Math Concepts	 75

Linear Interpolations Using Zeno's Paradox
Zeno of Elea (ca. 490–430 BCE) was a Greek philosopher who proposed a set of several
paradoxes that had to do with the philosophical impossibility of everyday, common-
sense motion.

In Zeno's Dichotomy Paradox, the question is posed of whether a moving object can
ever reach a stationary point. Imagine that a frog is hopping toward a wall. Every hop,
it covers half of the remaining distance to the wall. No matter how many times the frog
hops, it will still have covered only half of the distance remaining to the wall after its last
hop, so it will never reach the wall.

Ignoring the philosophical implications (and the complete lack of rationality) of this,
you can actually use a similar concept along with linear interpolation to create a smooth
motion that eases toward a certain point. This is used throughout this book to make
cameras that smoothly follow various points of interest (first discussed in Chapter 30,
"Mission Demolition").

Unity Example—Zeno's Paradox Interpolation
Continuing the same Interpolation project from before:

1.	 Add a sphere to the scene (GameObject > 3D Object > Sphere) and move it some-
where away from Cube.

2.	 Create a new C# script in the Project pane named ZenosFollower and attach it to
Sphere.

3. 	 Open ZenosFollower in Visual Studio and enter the code in Code Listing B.35.

Code Listing B.35  ZenosFollower.cs

| using UnityEngine;
|
| public class ZenosFollower : MonoBehaviour {
> [Header("Inscribed")]
> public GameObject poi; // Point Of Interest
> [Range(0, 1)] public float u = 0.1f;
|
> [Header("Dynamic")]
> public Vector3 p0;
> // p0 is on a separate line so that we don't get three Dynamic headers
> public Vector3 p1, p01;
|
> void FixedUpdate () {
> // Get the position of this and the poi
> p0 = this.transform.position;
> p1 = poi.transform.position;
>
> // Interpolate between the two

Z02_Bond_App-B_p001-102.indd 75 10/06/22 8:55 PM

76	 Appendix B  Useful Concepts

> p01 = (1-u)*p0 + u*p1;
>
> // Move this to the new position
> this.transform.position = p01;
> }
| }

4.	 Save the code and return to Unity.

5.	 Set the poi of Sphere:ZenosFollower to be Cube (by dragging Cube from the Hierarchy
pane into the poi slot of the ZenosFollower (Script) Inspector on the Sphere).

6.	 Save your scene!

Now, when you click Play, the sphere moves toward the cube. If you select the cube and
check the checkToStart box, the sphere will continue to follow the cube through its
motions. You can also move the cube around in the Scene window manually and watch
the sphere follow.

Try changing the value of u in the Sphere:ZenosFollower Inspector. Lower values will
make it follow more slowly whereas higher values will make it follow more rapidly. A
value of 0.5 would make the sphere cover half of the distance to the cube every frame,
which would exactly mimic Zeno's Dichotomy Paradox (but in practice, this follows far
too closely). It is true that with this specific code, the sphere will never get to exactly the
same location as the cube, and the movement is not very controllable, but this is meant
to just be a very quick, simple following script.

FixedUpdate() is used instead of Update() in ZenosFollower to make the behavior
consistent across all computers. If Update() had been used, then depending on the
processor load on your computer at any given time, the Sphere would follow closer
or further away because more or fewer Update() calls would happen each second as
the frame rate experienced natural variations. For the same reason, using Update()
would also cause the sphere to follow much closer on fast machines than on slow ones.
FixedUpdate() makes behavior consistent across all machines at all times because it is
always called 50 times per second.20

20.	FixedUpdate() is called 50 times per second because the default value for Time.
fixedDeltaTime is 0.02 (1/50th of a second), but you can change the frequency at which
FixedUpdate() is called by adjusting Time.fixedDeltaTime. This is especially useful if
you've changed Time.timeScale to something like 0.1 (slowing down Unity to 1/10th
regular speed). At a Time.timeScale of 0.1, FixedUpdate() would only be called every
0.2 seconds in real time, leading to visibly stuttering physics movement. Any time you alter
Time.timeScale, you should also alter Time.fixedDeltaTime by the same amount, so for
a Time.timeScale of 0.1, you want a Time.fixedDeltaTime of 0.002 to still experience 50
FixedUpdate() calls for every real-time second. This makes slow-mo effects look smooth.

Z02_Bond_App-B_p001-102.indd 76 10/06/22 8:55 PM

	 Math Concepts	 77

Interpolating More Than Just Position
You can interpolate almost any kind of numeric value. In Unity, this means that you can
very easily interpolate values like scale, rotation, and color among others.

Unity Example—Interpolating Various Attributes
You can either do this in the same scene as the previous interpolation examples or in a
new project:

1.	 Create a new scene named _Scene_Interp2 and create two new cubes in its Hierarchy
named c0 and c1.

2. 	 Make two new materials (Assets > Create > Material) named Mat_c0 and Mat_c1,
each based on the Standard shader.

3. 	 Drag each material onto its respective cube to apply the material.

4. 	 Select c0 and set its position, rotation, and scale to anything you want (as long as it's
visible on screen and the scale X, Y, and Z values are positive). Under the c0:Mat_c0
section of the Inspector, you should set the Albedo color to whatever you want.

5. 	 Do the same for the transform of c1 and the color of Mat_c1, making sure that c1
and c0 have different positions, rotations, scales, and colors from each other.

6. 	 Add a third cube to the scene, set its position to P:[0, 0, 0], and name it Cube01.

7. 	 Create a new C# script named Interpolator2 and attach it to Cube01. Enter the code
in Code Listing B.36 into the Interpolator2 script.

Code Listing B.36  Interpolator2.cs

| using UnityEngine;
|
| public class Interpolator2 : MonoBehaviour {
> [Header("Inscribed")]
> public Transform   c0;
> public Transform   c1;
> public float   timeDuration = 1;
> [Tooltip("Click the checkToStart checkbox to start moving")]
> public bool   checkToStart = false;
|
> [Header("Dynamic")]
> public Vector3   p01;
> public Color   c01;
> public Quaternion   r01;
> public Vector3   s01;
> public bool    moving = false;
> public float   timeStart;
|
> private Material    mat, matC0, matC1;
|

Z02_Bond_App-B_p001-102.indd 77 10/06/22 8:55 PM

78	 Appendix B  Useful Concepts

> void Awake() {
> mat = GetComponent<Renderer>().material;
> matC1 = c1.GetComponent<Renderer>().material;
> matC0 = c0.GetComponent<Renderer>().material;
> }
|
| void Update () {
> if (checkToStart) {
> checkToStart = false;
>
> moving = true;
> timeStart = Time.time;
> }
>
> if (moving) {
> float u = (Time.time-timeStart)/timeDuration;
> if (u>=1) {
> u=1;
> moving = false;
> }
>
> // This is the standard linear interpolation function
> p01 = (1-u)*c0.position + u*c1.position;
> c01 = (1-u)*matC0.color + u*matC1.color;
> s01 = (1-u)*c0.localScale + u*c1.localScale;
> // Rotations are treated differently because Quaternions are tricky
> r01 = Quaternion.SlerpUnclamped(c0.rotation, c1.rotation, u);
>
> // Apply these to this Cube01
> transform.position = p01;
> mat.color = c01;
> transform.localScale = s01;
> transform.rotation = r01;
> }
| }
| }

8. 	 Save the script and return to Unity.

9. 	 Drag c0 from the Hierarchy pane into the c0 field of the Cube01:Interpolator2 (Script)
Inspector. Also drag c1 from the Hierarchy into the c1 field of the Interpolator2 script.

10. 	 Click Play and then click the checkToStart check box in the Cube01:Interpolator2
Inspector. You'll see that Cube01 now interpolates much more than just position.

In this code, rotation is handled by the Quaternion.SlerpUnclamped() method
("Slerp" is short for the Spherical Linear intERPolation that is used for rotations in Unity).
Among other things, we use the built-in Unity method because quaternions involve a lot
of complex math (like, literally complex, in that a quaternion comprises three imaginary

Z02_Bond_App-B_p001-102.indd 78 10/06/22 8:55 PM

	 Math Concepts	 79

numbers and one real number). Rather than independently interpolate each of the X,
Y, Z, and W values of the quaternion, a Slerp attempts to choose the most direct path
around the surface of a sphere from one rotation to another. The standard Quaternion.
Slerp() method only accepts a u value from [0..1], but SlerpUnclamped() allows
extrapolation.21

Linear Extrapolation
An interpolation blends two points using a u value that ranges from 0 to 1. If you allow
the u value to go beyond this range, you get extrapolation (so named because instead of
interpolating between two values, it now extrapolates data outside of the original two
points).

Given the initial two points on a number line of 10 and 20, an extrapolation of u=2
would work as shown in Figure B.12.

Figure B.12  An example of extrapolation

Unity Example—Linear Extrapolation
To see this in code, make the bolded code additions in Code Listing B.37 to Interpolator2.
In addition to extrapolation, this additional code also allows the movement to loop.

Code Listing B.37  Interpolator2.cs

| public class Interpolator2 : MonoBehaviour {
| [Header("Inscribed")]
| public Transform c0;
| public Transform c1;
> public float uMin = 0;
> public float uMax = 1;
| public float timeDuration = 1;

21.	If you look at the documentation for Vector3, it also has a Lerp() method (short for Linear
intERPolation) that can interpolate between Vector3s, but I almost never use that function
because it clamps the values of u to the range [0..1] and doesn't allow extrapolation. In
Unity 5, a Vector3.LerpUnclamped() method was added that does not clamp to the 0 to 1
range. I do use the unclamped version, but I still think it's important for you to learn how to
Lerp on your own, which is why you didn't use Vector3.LerpUnclamped() in the code for
this section.

Z02_Bond_App-B_p001-102.indd 79 10/06/22 8:55 PM

80	 Appendix B  Useful Concepts

> public bool loopMove = false; // When true, causes the move to repeat
| [Tooltip("Click the checkToStart checkbox to start moving")]
| public bool checkToStart = false;
| …
|
| void Update () {
| …
| if (moving) {
| float u = (Time.time-timeStart)/timeDuration;
| if (u>=1) {
| u=1;
> if (loopMove) {
> timeStart = Time.time;
> } else {
| moving = false; // This line is now within the else clause
> }
| }
|
> // Adjust u to the range from uMin to uMax
> u = (1-u)*uMin + u*uMax;
> // ^ Look familiar? We're using a linear interpolation here too!
|
| // This is the standard linear interpolation function
| p01 = (1-u)*c0.position + u*c1.position;
| …
| }
| }
| }

Save the script and return to Unity. Now, if you click PIay in Unity and then click
the checkToStart box on Cube01, you'll get the same behavior as you saw when
testing Code Listing B.36. However, try changing uMin to –1 and uMax to 2 in the
Cube01:Interpolator2 (Script) Inspector. Click checkToStart, and you'll see that the
color, position, rotation, and scale all extrapolate and go beyond the original range that
you set.22 You can now also check loopMove to repeat the interpolation endlessly.

Easing for Linear Interpolations
The interpolations you've been doing so far are pretty nice, but they also have a very
mechanical feel to them because they start abruptly, move at a constant rate, and then
stop abruptly. Happily, several different easing functions can be used to make this move-
ment more interesting. This is most easily explained with a Unity example.

22.	You might receive a warning in the console telling you that "BoxColliders does[sic] not sup-
port negative scale or size." Don't worry about this. The extrapolation of scale could cause
negative scaling here, but we're not worried about collision detection in this example.

Z02_Bond_App-B_p001-102.indd 80 10/06/22 8:55 PM

	 Math Concepts	 81

Unity Example—Interpolation Easing
Continue the Interpolation project by following these steps:

1.	 Create a new C# script named Easing and open it in Visual Studio to add the code in
Code Listing B.38. As you do so, note that Easing does not extend MonoBehaviour.

Code Listing B.38  Easing.cs

| using UnityEngine;
|
> public class Easing { // Be sure to remove ": MonoBehaviour" from this line!	// a
|
> public enum eType {	 // b
> linear, easeIn, easeOut, easeInOut, sin, sinIn, sinOut
> }
|
> static public float Ease (float u, eType type, float val=2) {	 // c
> float u2 = u;
>
> switch (type) {
> case eType.linear: // val is ignored for Easing.eType.linear
> u2 = u;
> break;
>
> case eType.easeIn:
> u2 = Mathf.Pow(u, val);
> break;
>
> case eType.easeOut:
> u2 = 1 - Mathf.Pow(1-u, val);
> break;
>
> case eType.easeInOut:
> if (u <= 0.5f) {
> u2 = 0.5f * Mathf.Pow(u*2, val);
> } else {
> u2 = 0.5f + 0.5f * (1 - Mathf.Pow(1-(2*(u-0.5f)), val));
> }
> break;
>
> case eType.sin:
> // Try val values of 0.16f and -0.2f for Easing.eType.sin	 // c
> u2 = u + val * Mathf.Sin(2*Mathf.PI*u);
> break;
>
> case eType.sinIn: // val is ignored for SinIn
> u2 = 1 - Mathf.Cos(u * Mathf.PI * 0.5f);
> break;
>

Z02_Bond_App-B_p001-102.indd 81 10/06/22 8:55 PM

ptg39131280

82	 Appendix B  Useful Concepts

> case eType.sinOut: // val is ignored for SinOut
> u2 = Mathf.Sin(u * Mathf.PI * 0.5f);
> break;
> }
>
> return(u2);
> }
| }

a. The Easing class is not a subclass of MonoBehaviour.

b. The eType enum is defined within the Easing class, so eType variables outside
of this class would be declared as Easing.eType (as shown in Code Listing B.39).
Within the Easing class, only eType is needed.

c. val is an optional float parameter of the static Ease() function. It is used in
various ways as a modifier for many easing types. For example, for easeIn, it is
used as the power to which u is raised; if val is 2, then u2 = u2, if val is 3, then
u2 = u3. For sin easing, val is the multiplier for the amplitude of the sine curve
that is added to the line (see Figure B.13 for some examples).

This Easing class holds all the easing functions for u, making it easy to import them into
any of your projects. The various easing curves are shown and described in Figure B.13,
except for sinIn and sinOut, which are sine-based, less flexible versions of easeIn and
easeOut.

2. Save the Easing script, open the Interpolator2 script, and make the modifications
shown in Code Listing B.39.

Code Listing B.39  Interpolator2.cs

| public class Interpolator2 : MonoBehaviour {
| [Header("Inscribed")]
| …
| public bool loopMove = true; // Causes the move to repeat
> public Easing.eType easingType = Easing.eType.linear;
> public float easingVal = 2;
| [Tooltip("Click the checkToStart checkbox to start moving")]
| public bool checkToStart = false;
| …
|
| void Update () {
| …
| if (moving) {
| …
| // Adjust u to the range from uMin to uMax
| u = (1-u)*uMin + u*uMax;
| // ^ Look familiar? We're using a linear interpolation here too!

ptg39131280

Math Concepts	 83

|
> // The Easing.Ease function modifies u to change tweak movement
> u = Easing.Ease(u, easingType, easingVal);
|
| // This is the standard linear interpolation function
| p01 = (1-u)*c0.position + u*c1.position;
| …
| }
| }
| }

3. Save the Interpolator2 script in Visual Studio and switch back to Unity.

4. In the Cube01:Interpolator2 (Script) Inspector, set uMin = 0 and uMax = 1. Also check
loopMove to set it to true.

5. Save your scene!

6. Click Play and click checkToStart. Now, because loopMove is checked as well,
Cube01 continuously interpolates between c0 and c1.

Try playing around with the different settings for easingType. The easingVal value
only affects the easeIn, easeOut, easeInOut, and sin easing types. For the sin type,
try an easingVal of 0.16 as well as one of –0.2 to see the flexibility of this sine-based
easing type.

In Figure B.13 you can see a graphical representation of various easing curves. In this
figure, the horizontal dimension represents the initial u value, while the vertical dimen-
sion represents the eased u value (u2). You can see that in every example when u=0, u2
also equals 0 and when u=1, u2 also equals 1. Because of this, if the linear interpolation
is time based, the value will always move completely from p0 to p1 in the same amount
of time regardless of the easing settings.

The Linear curve shows no easing (i.e., u2 = u). In each of the other curves shown, the
u2 = u line remains as a dashed diagonal line to show normal, linear behavior. If the ver-
tical component of a curve is ever below the dashed diagonal, the movement is lagging
behind a linear curve. Conversely, if the vertical component of the curve is ever above
the dashed diagonal, the eased curve is ahead of where the linear movement would
have been. The slope of the curve represents the speed of the interpolation at that
point: A 45° slope is the same speed as the linear interpolation, while a shallower slope
is slower and a steeper slope is faster.

The EaseIn curve starts slowly and then moves faster toward the end (u2 = u*u). This is
called "easing in" because the first part of the motion is "easy" and slow before it then
speeds up.

ptg39131280

84	 Appendix B  Useful Concepts

Figure B.13  Various easing curves and their formulae. In each case, the number after the pipe (|)
represents the val (or easingVal) value.

The EaseOut curve is the opposite of the EaseIn curve. With this curve, the movement
starts quickly and then slows at the end. This is commonly known as "easing out."

The three Sin curves on the bottom of the diagram all follow the same formula
(u2 = u + val * sin(u*2π)), where val is a floating-point number (the variable
val or easingVal in the code). The multiplication of u*2π inside of the sin() ensures
that as u moves from 0 to 1, it passes through a full sine wave (moving center, up,
center, down, and back to center). If val=0, the sine curve has no effect on the
curve (i.e., the curve remains linear). As val gets further from 0 (either positively or
negatively), it has more of an effect.

The curve Sin|–0.2 is an ease-in-out with a bounce. A val of –0.2 adds a negative sine wave
to the linear progression, causing a moving object to back up a bit from p0, move quickly
toward p1, overshoot a bit, and then settle at p1. A val closer to zero (e.g., Sin|–0.1) would
cause the object to ease-in to full speed at the center point and then slow as it approached
p1 without the extrapolation bounce at either end.

In the curve Sin|0.16, a slight sine curve is added to the linear u progression, causing the
curve to get ahead of linear, stop briefly in the middle, and then hurry to catch up at the
end. If you're moving an object, this brings it to the center point, slows it in the middle
to "feature" it for a while, and then moves it out.

	 Math Concepts	 85

The curve Sin|0.6 is the easing curve that is used by Enemy_2 in Chapter 32, "Space
SHMUP — Part 2." In this case, enough positive sine wave has been added to cause the
object to shoot past the center point to a point about 80% of the way to p1, then move
back to a point 20% of the way to p1, and then finally move to p1.

Note that the easing functions only exhibit the behavior we want for a u value in the
range [0..1] and wouldn't handle extrapolation of u values well.

You can see some more examples of easing functions demonstrated with animations
at http://easings.net, though their names for the functions and implementations differ
from mine (I didn't know standard functions already existed when I created mine).

Bézier Curves
I use Bézier curves enough in my work that—even though they are a form of
interpolation—they deserve their own section here. A Bézier curve is a linear interpola-
tion between more than two points. Just as with a normal linear interpolation, the base
formula is p01 = (1-u) * p0 + u * p1. The Bézier curve just adds more points and more
calculations. But Bézier curves are one of the wonderful cases where math can lead to
something simply beautiful. To gain an idea of what I'm talking about, I highly rec-
ommend watching the award-winning video "The Beauty of Bézier Curves" by Freya
Hölmer.23

In any Bézier curve, the interpolated point will start at the first point and end at the last
point but never touches the points in between. Because of this, the first and last points
are often referred to as "end points," while the points in between are called "control
points."

Three-Point and Four-Point Bézier Curves
Given three points: p0, p1, and p2

p01 = (1-u) * p0 + u * p1

p12 = (1-u) * p1 + u * p2

p012 = (1-u) * p01 + u * p12

As is demonstrated in the preceding equations, for the three points p0, p1, and p2,
the location of the point of the Bézier curve is calculated by first performing a linear
interpolation between p0 and p1 (the resulting point is called p01), then performing

23.	https://youtu.be/aVwxzDHniEw or search "the beauty of bezier curves" on YouTube. Freya
Hölmer is a brilliant Unity developer, and I recommend watching any of her videos! –
accessed March 27, 2022.

Z02_Bond_App-B_p001-102.indd 85 10/06/22 8:55 PM

86	 Appendix B  Useful Concepts

a linear interpolation between p1 and p2 (called p12), and finally performing a linear
interpolation between p01 and p12 to obtain the final point, p012. A graphical repre-
sentation of this is shown in Figure B.14.

Figure B.14  A linear interpolation and three-point and four-point Bézier curves

A four-point curve requires more calculations to accommodate all four points:

p01 = (1-u) * p0 + u * p1

p12 = (1-u) * p1 + u * p2

p23 = (1-u) * p2 + u * p3

p012 = (1-u) * p01 + u * p12

p123 = (1-u) * p12 + u * p23

p0123 = (1-u) * p012 + u * p123

Four-point Bézier curves are used in many drawing programs as a way of defining very
controllable curves, including Adobe Flash,24 Illustrator, and Photoshop; the Affinity
suite (Designer, Photo, and Publisher); The Omni Group's OmniGraffle; and many oth-
ers. In fact, the curve editor used in Unity for animation and audio processing uses a
form of four-point Bézier curves.

Unity Example—Bézier Curves
Follow these steps to create a Bézier curve example in Unity. When writing code, I don't
use the accented é in Bézier because code is usually written with only the original ASCII
characters (which lack accents).

1.	 Create a new scene in your Unity project and save it as _Scene_Bezier.

24.	This is a complete aside, but, hey, thanks for reading the footnotes! I deeply lament the loss
of both Macromedia Director (and its web plugin, Shockwave) and Macromedia Flash. Each
of them was an amazing tool for non-programmers to make interactive content. Director
enabled the CD-ROM era of games, and of course, Flash was responsible for most of the
interesting web games and animation throughout the 2000s. Yes, of course, there were
security issues with how the plugins worked, but I have not found anything since that allows
creative designers to so quickly mock up a game idea. Plus, art creation in Flash was just fun!

Z02_Bond_App-B_p001-102.indd 86 10/06/22 8:56 PM

	 Math Concepts	 87

2. 	 Add four cubes to the Hierarchy named c0, c1, c2, and c3.

a.	 Set the transform.scale of all cubes to S:[0.5, 0.5, 0.5].

b.	 Position the cubes in various positions around the scene and adjust your Scene
view so that you can see all of them.

3. 	 Add a sphere to the scene.

a.	 Attach a TrailRenderer to the sphere.

b.	 Open the Materials array of the TrailRenderer and set Element 0 to the built-in
material Default-Particle.

4. 	 Create a new C# script named Bezier and attach it to Sphere. Open Bezier in Visual
Studio and enter the code in Code Listing B.40 to demonstrate a four-point Bézier
curve in Unity.

Code Listing B.40  Bezier.cs

| using UnityEngine;
|
| public class Bezier : MonoBehaviour {
> [Header("Inscribed")]
> public float timeDuration = 1;
> public Transform c0, c1, c2, c3;
> [Tooltip("Click the checkToStart checkbox to start moving")]
> public bool checkToStart = false;
|
> [Header("Dynamic")]
> public float u;
> public Vector3  p0123;
> public bool  moving = false;
> public float timeStart;
|
| void Update () {
> if (checkToStart) {
> checkToStart = false;
> moving = true;
> timeStart = Time.time;
> }
>
> if (moving) {
> u = (Time.time-timeStart)/timeDuration;
> if (u>=1) {
> u=1;
> moving = false;
> }
>
> // 4-point Bezier curve calculation
> Vector3 p01, p12, p23, p012, p123;
>

Z02_Bond_App-B_p001-102.indd 87 10/06/22 8:56 PM

88	 Appendix B  Useful Concepts

> p01 = (1-u)*c0.position + u*c1.position;
> p12 = (1-u)*c1.position + u*c2.position;
> p23 = (1-u)*c2.position + u*c3.position;
>
> p012 = (1-u)*p01 + u*p12;
> p123 = (1-u)*p12 + u*p23;
>
> p0123 = (1-u)*p012 + u*p123;
>
> transform.position = p0123;
> }
| }
| }

5. 	 Save the Bezier script and return to Unity.

6. 	 Assign each of the four cubes to their respective fields in the Sphere:Bezier (Script)
Inspector.

7.	 Click Play and then click the checkToStart check box in the Inspector.

Sphere will trace a Bézier curve between the four cubes. It's important to note here
that Sphere only ever touches c0 and c3. It is influenced by but does not touch c1 and
c2. This is true of all Bézier curves. The ends of the curve always touch the first and last
points, but no points in-between are ever touched. If you're interested in looking into a
kind of curve where the midpoints are touched, look up "Hermite spline" online (as well
as other kinds of splines).

A Recursive Bézier Curve Function
As you saw in the previous section, the additional calculations for adding more control
points to a Bézier curve are pretty straightforward conceptually, but it takes a while to
type all the additional lines of code. The upcoming code listing uses a recursive function
to handle any number of points without any additional code. It's a little conceptually
complex, so let's start by considering how it should work.

To interpolate a standard three-point Bézier curve, you start with three points:
[p0, p1, p2]. However, to interpolate them, you need to first break it down into two
smaller interpolations [p0, p1] and [p1, p2]. You interpolate each of these and return
the interpolated points p01 and p12. Finally, you interpolate between p01 and p12 to
get the final point p012.

The BezierR() (R for recursive) function will do the same thing, recursively breaking
the problem down to smaller and smaller lists of points until each branch gets to a list of
just one point and then returning those points up the recursion chain, interpolating on
the way up.

Z02_Bond_App-B_p001-102.indd 88 10/06/22 8:56 PM

	 Math Concepts	 89

In the first edition of this book, the recursive Bézier function created a new List<Vector3>
with each recursion, but that was very inefficient because it wasted both memory and
processing power with each creation of a new List. In fact, interpolating a four-point Bézier
curve with the first-edition version of the recursive function would create fourteen ad-
ditional lists. (Please refer to Figure B.15 and Code Listing B.41 as you read the next few
paragraphs.)

Rather than make a ton of new Lists, the second edition version of the recursive function
(shown in Code Listing B.41) just passes the same List into each of its recursions along
with two integers—iL and iR—as you can see in the BezierR() function declaration.

static public Vector3 BezierR(float u, List<Vector3> pts, int iL=0, int iR=-1) {…}

The integers iL and iR are each an index into the List pts, meaning that iL and iR are
references to elements of pts. If iL is 0, then it's pointing to the 0th element of pts. If iR
is 3, then it's pointing to the third element of pts. iL and iR are optional parameters.
If neither are passed in (i.e., BezierR() is called with just u and pts arguments), then
iL will be 0, and iR will start as –1 but will thereafter be given the index of the final
element of pts.

iL represents the leftmost element of pts that is being considered by any recursion of
BezierR(), and iR represents the rightmost element. So, for a four-point List pts, iL
will start at 0, and iR will start at 3 (the index of the last point in pts). Each time the
BezierR() function recurs, it branches and sends a range of fewer points to the next
level. Rather than create new Lists, the new version of BezierR() adjusts iL and iR to
look at a smaller section of the overall List pts. Eventually, a terminal case is reached
in each branch where iL and iR both point to the same element of pts, and then the
value of that element is returned up the chain as a Vector3, and the series of actual inter-
polations takes place as the chain of recursion unwinds.

note
In the past, I used this recursive version of the Bézier curve function in many
projects, but since I've learned about Data-Oriented Design, I've found a
non-recursive way to calculate any number of points that is even more effi-
cient, so I've added a data-oriented version of the function after this section.

However, this is still an excellent example of using a recursive function to
solve a problem, and it offers you a chance to see an example of transition-
ing a function from OOP to DOD, so I'm keeping it in this edition.

Z02_Bond_App-B_p001-102.indd 89 10/06/22 8:56 PM

90	 Appendix B  Useful Concepts

Figure B.15 shows the series of recursive calls that are made by a single four-point call to
the BezierR() function. The green arrows trace the calls, and the red dashed arrows
show the returns. You can see that either iL or iR is respectively incremented or decre-
mented with each call, and the elements of pts that are black in the diagram are those
that are in the range from iL to iR for each call to BezierR().

Figure B.15  The path of calls (solid green arrow) and returns (dashed red arrow) when recursively
interpolating a four-point Bezier curve

Unfortunately, this method of forking recursion will calculate the value of P12 twice (it
has two green arrows pointing to the [p1, p2] interpolation and two red arrows return-
ing the p12 value). This is an inefficiency in this version of solving a Bézier curve that
is avoided by the data-oriented BezierArray() method that is discussed in the next
section.

Code Listing B.41 is an excerpt from the Utils.cs class that you import in some of the
later projects of Part III. It shows a recursive BezierR() function to calculate a Bézier
curve for any number of points.

Z02_Bond_App-B_p001-102.indd 90 10/06/22 8:56 PM

	 Math Concepts	 91

Code Listing B.41  Utils.cs

| using System.Collections;
| using System.Collections.Generic; // Needed for the List<>s in these functions
| using UnityEngine;
|
| public class Utils {
| … // There are many lines in Utils prior to the BezierR methods
|
> //============================ Bézier Curves ============================	 // a
> /// <summary>
> /// While most Bézier curves are 3 or 4 points, it is possible to have
> /// any number of points using this recursive function.
> /// LerpUnclamped is used to allow extrapolation.
> /// </summary>
> /// <param name="u">The amount of interpolation [0..1]</param>
> /// <param name="pts">A List of Vector3 points to interpolate</param>
> /// <param name="iL">Index of the left extent of the used elements of pts.
> /// Defaults to 0.</param>
> /// <param name="iR">Index of the right extent of the used elements of pts.
> /// Defaults to -1, which is changed to the last element's index.</param>
> static public Vector3 BezierR(float u,List<Vector3> pts,int iL=0,int iR=-1){
> // If iR is the default -1 value, set iR to the last element in pts	 // b
> if (iR == -1) iR = pts.Count-1;	 // c
>
> // If we are only looking at one element of pts, return it	 // d
> if (iL == iR) return(pts[iL]);
>
> // Call BezierR again with all but the leftmost used element of pts
> Vector3 leftVal = BezierR(u, pts, iL, iR-1);	 // e
> // And call BezierR again with all but the rightmost used element of pts
> Vector3 rightVal = BezierR(u, pts, iL+1, iR);	 // f
>
> // The result is the Lerp of these two recursive calls to BezierR
> Vector3 res = Vector3.LerpUnclamped(leftVal, rightVal, u);	 // g
> return(res);
> }
|
> // This version allows an Array or a series of Vector3 arguments as input
> static public Vector3 BezierR(float u, params Vector3[] arr) {	 // h
> return(BezierR(u, new List<Vector3>(arr)));
> }
|
| …
| // Utils includes many versions of the BezierR function for other data types
| }

Z02_Bond_App-B_p001-102.indd 91 10/06/22 8:56 PM

92	 Appendix B  Useful Concepts

a.	 I tend to use large, obvious headings like this throughout the Utils script because
it is so large. On the following line, you can see XML Documentation for the Bezi-
erR function (the /// comments with tags like <summary> and <param>). Visual
Studio can read these and give you this information if you mouse over the name
of the function anywhere in code. See "XML Documentation" in this appendix
for more information.

b.	 The BezierR() function takes as input a float u and a List<Vector3> pts of
points to interpolate. It also has two optional parameters, iL and iR, which
represent the indices in the pts List of the leftmost (iL) and rightmost (iR)
element being considered by this recursion of Bezier(). See Figure B.15 for
more information.

c.	 If the iR value passed in is –1 (or if no value is passed in), iR is set to the index of
the last element in pts.

d.	 As mentioned in Chapter 24, "Functions and Parameters," the terminal case of
a recursive function is the one that stops the recursive calling of the function
and begins returning values up the chain. The terminal case of BezierR() is
reached when iL == iR. If iL == iR, then both the left and right indices into the
List pts are pointing at the same Vector3 element. When this occurs, the
Vector3 to which they both point is returned.

e.	 This is one of the two recursive calls to BezierR(). Here, the iR index is decre-
mented by 1. So, if this initial call to BezierR() is considering elements 0–3 of
pts, the recursion called here will only consider elements 0–2. This allows us to
consider fewer elements of pts on the next recursion without creating a new
List.

f.	 This is the other recursive call to BezierR(). Here iL index into pts is incre-
mented by 1. This has the effect of passing all but the first element of pts into
the next recursion.

g.	 The results of the recursive calls on lines // e and // f have been stored in two
Vector3s: leftVal and rightVal. These two Vector3s are interpolated by
Vector3.LerpUnclamped(), and the result is returned up the recursion chain.

h.	 As covered in Chapter 24, "Functions and Parameters," the params keyword
allows the arr array parameter to accept either a Vector3 array or a series
of individual Vector3 parameters separated by commas (after the first float
argument). This is used on line // d of Code Listing B.42.

Z02_Bond_App-B_p001-102.indd 92 10/06/22 8:56 PM

ptg39131280

Math Concepts	 93

Code Listing B.42 shows a test class that uses the params version of BezierR() in two
different ways.

Code Listing B.42  BezierRTester.cs Test Class for Utils.BezierR()

| using UnityEngine;
|
| public class BezierRTester : MonoBehaviour {
> public Vector3 p0 = new Vector3(1, 0, 0);
> public Vector3 p1 = new Vector3(1, 1, 0);
> public Vector3 p2 = new Vector3(0, 1, 0);
> public Vector3 p3 = new Vector3(0, 0, 0);
|
| void Start() {
> System.Text.StringBuilder sb = new System.Text.StringBuilder();	 // a
> Vector3[] points = new Vector3[] { p0, p1, p2, p3 };
> Vector3 p0123;
> for (float u = 0; u <= 1; u += 0.1f) {
> sb.Append("As array: ");
> p0123 = Utils.BezierR(u, points); // b
> sb.Append(p0123.ToString());
> sb.Append("\tAs floats: "); // c
> p0123 = Utils.BezierR(u, p0, p1, p2, p3); // d
> sb.AppendLine(p0123.ToString()); // e
> }
> Debug.Log(sb.ToString());
| }
| }

a. For information on the StringBuilder, see the "System.Text.StringBuilder"
section of this appendix.

b. Here, the array points is passed into the array arr parameter of Utils.
BezierR(), which is nothing unexpected.

c. The \t is a tab.

d. The params keyword of the BezierR() overload definition on line // h of
Code Listing B.41 allows the series of Vector3 parameters (i.e., p0, p1, p2,
p3) to automatically be converted into a Vector3[] array and assigned to the
arr parameter of that BezierR() function.

e. The output from the StringBuilder sb shows that both versions of calls to
BezierR() result in the same values:

As array: (1.0, 0.0, 0.0)	 As floats: (1.0, 0.0, 0.0)
As array: (1.0, 0.3, 0.0)	 As floats: (1.0, 0.3, 0.0)
As array: (0.9, 0.5, 0.0)	 As floats: (0.9, 0.5, 0.0)
… // and so on

94	 Appendix B  Useful Concepts

Lines // b and // d will both call the overload of BezierR() with the arr array
(declared on line // h of Code Listing B.41). Then on the single line of that overload,
the arr array is converted to a List<Vector3>, and when BezierR() is called with
a List<Vector3> as the second argument, it calls the original version of BezierR()
declared on line // b of Code Listing B.41.

A Data-Oriented Bézier Function
Reusing the same List rather than creating new Lists with every recursion significantly
improved the Bézier function in Utils.cs from the first to second edition of the book, but
as I started learning about Data-Oriented Design, it occurred to me that the BezierR()
method was wasting a lot of time calling itself recursively, including calculating some
values twice (like the p12 example explained after Figure B.15).

The version that I now use of the Bezier() function for any number of points uses a
two-dimensional array to hold all the points and then combines them until they are a
single value. Figure B.16 shows how the array approach works (with four points on the
left and a Bézier interpolation of ints on the right):

Figure B.16  Two visualizations of how a 2D array will be used to interpolate a Bézier curve

As you can see in the figure, when four points are passed into the array version of a
Bézier solver, the following steps happen:

A.	 All four points are initially placed in the 3rd row of the array.

B.	 Each pair of points on the 3rd row is interpolated into positions 0–2 on the
2nd row.

C.	 Each pair of points on the 2nd row is interpolated into positions 0–1 on the
1st row.

D.	 The remaining pair of points on the 1st row is interpolated into the [0, 0] cell.

Z02_Bond_App-B_p001-102.indd 94 10/06/22 8:56 PM

ptg39131280

Math Concepts	 95

The right half of Figure B.16 shows this process on some simple integers. The pairs of val-
ues on the 3rd row are all interpolated using a u value of 0.5, with the results placed in the
2nd row. The process continues until the final interpolated value is placed in cell [0, 0].

Code Listing B.43 shows how this can be done in code using params to handle any
number of Vector3 points. There is also an overload that handles Lists.

Code Listing B.43  BezierArray() Code from Utils.cs

| public class Utils {
| …
|
| //============================ Bézier Curves ============================
| …
|
> /// <summary>
> /// This two-dimensional array version of a Bézier curve solver is the most
> /// performant I've developed so far that can handle any number of points.
> /// LerpUnclamped is used to allow for extrapolation.
> /// </summary>
> /// <param name="u">The amount of interpolation [0..1]</param>
> /// <param name="arr">A params array of points to interpolate</param>
> /// <returns>The interpolated value</returns>
> static public Vector3 BezierArray(float u, params Vector3[] arr) { // a
> int numPoints = arr.Length;
> Vector3[,] arr2D = new Vector3[numPoints, numPoints]; // b
> // Put the initial points in the last row of arr2D
> for (int i = 0; i < numPoints; i++) { // c
> arr2D[numPoints - 1, i] = arr[i];
> }
>
> // Loop over the rows
> Vector3 vecL, vecR;
> for (int row = numPoints - 1; row > 0; row--) { // d
> for (int col = 0; col < row; col++) { // e
> vecL = arr2D[row, col];
> vecR = arr2D[row, col + 1];
> arr2D[row - 1, col] = (1-u)*vecL + u*vecR;	 // f
> }
> }
>
> return arr2D[0, 0];	 // g
> }
|
| …
| }

ptg39131280

96	 Appendix B  Useful Concepts

a. The params keyword allows the series of Vector3 parameters (i.e., p0, p1,
p2, and p3) to automatically be converted into a Vector3[] array and assigned
to arr.

b. A two-dimensional array arr2D is created that is large enough to hold
everything. In the example of a four-point Bézier curve, a 4x4 array is created.

c. Each of the elements are copied from arr into the last (i.e., 3rd) row of arr2D.

d. A row value is created that is initialized to numPoints-1, the number of the last
row, to which we just copied all the points from arr. The iterator clause of the
for loop will decrease row, running a loop for row=3, 2, and 1 (but not 0).

e. In a second for loop, a col value is initialized to 0 and counts up, running a
loop for col=0, 1, and 2 (but not 3).

f. Pairs of points from the current row are interpolated, and the result is placed
into the next row down. For example, when the points at [3, 0] and [3, 1] are
interpolated, the result is placed in [2, 0].

g. When the nested for loops complete, the value at [0, 0] is the final
interpolated point that BezierArray() should return.

This array version has several advantages over the recursive version of Bézier solving:

■■ Only one function is ever called, so we avoid the overhead of multiple function calls.

■■ High data locality! Unity's Vector3 is a struct, so its x, y, and z values are all stored
in the same place. As a result, the values of the Vector3s in arr2D are very closely
packed in memory, speeding up access times. (To read more about data locality, see
Chapter 28, "Data-Oriented Design.")

■■ Each value is only calculated once, as opposed to the p12 example shown in Figure
B.15 where the recursive calls repeat calculations.

■■ It's much more straightforward to explain. The diagram in Figure B.16 is probably
much easier to understand than the one for BezierR() in Figure B.15.

A version of the array-based Bézier function is included in the ProtoTools Utils class
that is part of the initial unitypackage for the Prospector and Dungeon Delver projects,
though in that package, it is simply called Bezier() rather than BezierArray(),
because I want it to be clearly seen as the default version of the function.

The Utils C# script includes several overloads of the Bezier() function for different
types (e.g., Vector3, Vector2, float, and Quaternion). It also includes more over-
loads that use the params keyword to allow any number of points to be passed in as
arguments to the Bezier() function as well as a List version.

Several good implementations of Bézier curves and Splines (a way of making curves that
connect into a long, smooth path) are available in the Unity Asset Store.

	 Pen-and-Paper Roleplaying Games	 97

Pen-and-Paper Roleplaying Games
Many good pen-and-paper roleplaying games (RPGs) are out there. The most popular
is still probably Dungeons & Dragons by Wizards of the Coast (D&D), which is now in
its fifth edition. Since the third edition, D&D has been based on the d20 system, which
uses a single twenty-sided die in place of the many complex rolls of myriad dice that
were common in prior systems. I like D&D for a lot of things, but I have found that my
students often get bogged down in combat when attempting to run D&D as their first
system; it has a lot of very specific combat rules (especially in the fourth edition). Even
in experienced roleplaying groups, the beginning of any D&D combat usually marks the
end of any story progression for the rest of the game session. After the single battle is
over, there's no more time in the session.

My personal recommendation for a first RPG system is FATE by Evil Hat Productions,
especially the streamlined FATE Accelerated (FAE) system. FAE is a simple system that
allows players to contribute directly to the narrative much more than other systems
allow. (Most other systems give the game master running the game exclusive power
over any events that happen.) You can learn about the core version of FATE at the
website http://faterpg.com , and you can read the free FATE system reference document
(SRD) at http://fate-srd.com . For info on FATE Accelerated, and to get a pay-what-
you-wish 50-page eBook with all the info you need to get started, check out
http://www.evilhat.com/home/fae/ .25

YOUR CODE CAN ALWAYS BE BETTER, AND THAT'S OKAY!

One of the big takeaways that I want you to get from these Bézier function
examples is that code can always be improved and refactored to be more efficient
or readable (though at the extreme end, those two goals are often mutually exclu-
sive; assembly language can be extremely efficient, but it's not easy to read, even
for most programmers). In retrospect, the array-based version of the Bézier func-
tions seems much more straightforward and obvious, but that's not the order in
which I came up with them. (And, in fact, I could create a version of the Bezier()
function that used a single-dimensional array, which would be even more efficient
than the two-dimensional array version.)

As you continue to develop and refactor your projects, don't get hung up on the
inefficiencies or deficiencies of your old code, and don't worry about throwing
out old code or old work. Keep pushing forward and keep improving your code
progressively; that's how you become a better programmer.

25.	You can also directly download the 50-page FAE eBook from http://www.evilhat.com/home/
wp-content/uploads/FAE.zip . All these FATE-related links were accessed August 27, 2021.

Z02_Bond_App-B_p001-102.indd 97 10/06/22 8:56 PM

98	 Appendix B  Useful Concepts

Tips for Running a Good Roleplaying Campaign
Running a roleplaying campaign can do wonders for your abilities as both a game
designer and storyteller. Here are some tips that I've found to be very useful when my
students start running campaigns:

■■ Start simple: A lot of different roleplaying systems are out there, and they vary
greatly in the complexity of their rules. As described in the preceding section, I
recommend starting with a simple system like the FATE Accelerated system by Evil
Hat Productions. After you've played a few games with that system, you can move
on to more complex systems like D&D or Pathfinder. The fifth edition of D&D has a
relatively straightforward core rulebook with many supplemental rulebooks to add
as you get deeper into the system.

■■ Start short: Rather than starting with the first episode of a campaign that you
expect to take a full year of play to complete, try starting with a simple mission
that can be wrapped up in a single night of play. This gives your group a chance to
try out their characters and the system and see if they like both. If not, it's easy to
change to something else, and it's much more important that the players enjoy their
first experience roleplaying than that you kick off an epic campaign.

■■ Help the players get started: If the players in your campaign have little or no pri-
or experience roleplaying, creating their characters for them is a very good idea. This
gives you the chance to make sure that the characters have complementary abilities
and stats so that they’ll combine into a good team. A standard roleplaying party is
composed of the following characters (these examples are from a fantasy world, but
they can be adapted to anywhere; in a future setting, the wizard would be a hacker):

■■ A warrior to absorb enemy damage and fight up close (a.k.a., a tank)

■■ A wizard to do long-range damage and detect magic (a.k.a., a glass cannon)

■■ A thief to disarm traps and make powerful sneak attacks (a.k.a., a blaster)

■■ A cleric to detect evil and heal the other party members (a.k.a., a controller)

If you're going to create characters for your players, you should get early buy-in from
them by asking them to tell you about the kind of play experience they would like
and the kind of abilities that they want their character to have. Early buy-in and inter-
est is one of the keys to getting your players past the rough patches that can happen
at the beginning of a campaign.

■■ Plan for improvisation: Your players will frequently do things that you don't
expect. The only way to plan for this is to prepare yourself for flexibility and impro-
visation. Be ready with things like maps of generic spaces, a list of names that could
be used for NPCs (non-player characters) that the party may or may not encounter,
and a few generic enemies or monsters of various difficulties that you can conjure at
will. The more you have ready beforehand, the less time you'll have to spend looking
through your rulebook in the middle of the game.

Z02_Bond_App-B_p001-102.indd 98 10/06/22 8:56 PM

	 User Interface Concepts	 99

■■ Be willing to make rulings: If you can't find the answer to a question in the rules
after five minutes of looking, just make a ruling using your best judgment and agree
with the players that you'll look it up after the game session is over. This keeps the
game from bogging down due to esoteric rules.

■■ It's also the players' story: Remember to allow the players to go off the beaten
path. If you've prepared too narrow a scenario, you might be tempted to not let
them do so, but that would run the risk of killing their enjoyment of the game.

■■ Remember that constant optimal challenge isn't fun: In the discussion of
flow in Chapter 8, "Design Goals," you read that if players are always optimally
challenged, they get exhausted quickly. This is also true in RPGs. Boss fights should
always optimally challenge your players, but you should also have fights where the
players win easily (this helps demonstrate to them that their characters are actually
getting stronger as they level up) and sometimes even fights that the players need
to flee from to survive (this is usually not expected by players, and can be really
dramatic for them). Unlike most systems, FAE has a really intriguing game mechanic
that makes giving up and fleeing a much better choice than fighting to lose, which is
another reason I really like it.

If you keep these tips in mind, it should help your roleplaying campaigns be a lot more
fun for both you and your players.

User Interface Concepts
This section covers how to use various (e.g., Microsoft, Sony, Bluetooth) gamepad
controllers on your Windows, macOS, or Linux machine and information about how to
enable right-click on macOS computers.

Complex Game Controller Input
In general, the Unity Input Manager's defaults handle basic input like the left analog
stick and basic button presses of a single controller pretty well, but if you want to use
more complex input on a modern controller or if you want to create a game that man-
ages input from several players, I strongly recommend that you look to something other
than the built-in Unity Input Manager that you've seen throughout this book. Here are
some of the ones that I've seen give people the best results:

■■ InControl by Gallant Games: http://www.gallantgames.com

InControl is my personal favorite input manager. It does a great job of mapping doz-
ens of controllers to some basic inputs (left stick, right stick, D-pad, two bumpers,
two triggers, and four action buttons) that are generalized across all the controllers.
If you want controllers to "just work," this to me seems like your best bet. You can
find it by searching "InControl" on the Unity Asset Store.

Z02_Bond_App-B_p001-102.indd 99 10/06/22 8:56 PM

100	 Appendix B  Useful Concepts

■■ Rewired by Guavaman Enterprises: https://guavaman.com/projects/rewired/

Rewired is the input manager that I've seen used most by other developers. It was
even used by Will Winn Games to manage up to 12 simultaneous local controllers
for their fantastic pirate game Plunder Panic. Rewired was also used by Digital Mania
to develop their four-player brawler Warshmallows, which you can see featured in
Figure 10.2 of Chapter 10, "Game Testing." Rewired requires more setup than In-
Control, but as a result, I think it's more flexible. You can find it by searching
"Rewired" on the Unity Asset Store.

Additionally, to prep for my work with Digital Mania, I created a controller watcher
that works with Rewired to show the status of all four controllers on screen as uGUI
elements. This allows you to see what was happening with controller input in any
screen recordings you do for playtesting. Check the book website http://book.
prototools.net for a link to download this tool.

■■ Unity Input System: https://docs.unity3d.com/Manual/com.unity.inputsystem.html

Unity has recently developed a much more powerful and robust Input System pack-
age to provide more functionality than the traditional Input Manager. I did not use
it in this book because there is considerable setup time to get basic input working.
However, the new Input System is much more reliable across multiple platforms and
controller types, so I expect to use it in the future.

Although configuring the old Unity Input Manager to handle multiple controllers of
different types on various game platforms is possible, it's a massive time commitment to
do so, and I highly recommend paying the $40 for either InControl or Rewired to make
that hassle their problem instead of yours.

Input Manager Mapping for Various Controllers
Although most of the games included in this book use a mouse or keyboard interface,
I'm guessing you might want to eventually hook up a gamepad controller to your
games. Unfortunately, this is more complex than you would expect. In general, if you
can connect a Bluetooth gamepad controller to your computer, then you will be able
to get "Horizontal" and "Vertical" axis input from the left analog stick, but the rest is
unfortunately different for various controllers on various operating systems, with each
type of controller (PlayStation, Xbox, Switch, etc.) appearing differently to the operating
system, and each operating system also interpreting them differently. This is the reason
that Rewired and InControl are so popular as well as the reason that Unity has devel-
oped their new Input System.

Previous editions of this book included the mappings for a wired Xbox 360 control-
ler when plugged into macOS, Windows, and Linux (as examples of the differences,
Joystick Axis 5 is up and down on the right analog stick on Linux and Windows but it is
the left trigger on macOS; and Axis 6 is the right trigger on macOS and Linux but it is

Z02_Bond_App-B_p001-102.indd 100 10/06/22 8:56 PM

	 User Interface Concepts	 101

left and right on the D-pad on Windows). Additionally, recent changes to macOS have
invalidated most of the drivers for Xbox 360 controllers that I can find online. Rather
than get your hopes up by including that diagram in this edition, I'm just going to rec-
ommend again that you look to InControl, Rewired, or Unity's new Input System if you
want to develop a game that will work with various gamepad controllers across multiple
operating systems.

Right-Click on macOS
Throughout this book, I often ask you to right-click on something. However, many
people don't know how to right-click on a Macintosh because it's not the default setting
for macOS trackpads and mice. There are actually several ways to right-click, and the
one you use depends on how new your Mac is and how you prefer to interact with your
machine.

Control-Click = Right-Click
Near the bottom-left corner of all modern macOS keyboards is a control key. If you hold
down the control key and then left-click (your normal click) on anything, macOS treats it
as a right-click.

Use Any PC Mouse
You can use almost any PC mouse that has two or three buttons on macOS. I personally
use a Logitech MX Anywhere 2 or a Razer Orochi.

Set Your macOS Mouse to Right-Click
If you have a macOS mouse made in 2005 or later (e.g., the Apple Mighty Mouse or
Apple Magic Mouse), you can enable right-click by following these steps:

1.	 Open System Preferences from the Apple menu in the top-left corner of your screen.
Then click the Mouse settings icon.

2.	 Select the Point & Click tab at the top of the screen.

3.	 Check the box next to Secondary click.

4.	 Choose Click on right side from the pop-up menu directly below Secondary Click.

This makes a click on the left side of the mouse left-click and a click on the right side
right-click.

Z02_Bond_App-B_p001-102.indd 101 10/06/22 8:56 PM

ptg39131280

102	 Appendix B  Useful Concepts

Set Your macOS Trackpad to Right-Click
As with the Apple Mouse, you can configure any Apple laptop trackpad (or the Blue-
tooth Magic Trackpad) to right-click.

1. Open System Preferences from the Apple menu in the top-left corner of your screen.
Then click the Trackpad settings icon.

2. Choose the Point & Click tab at the top of the window.

3. Check the box next to Secondary Click.

4. If you choose Click or tap with two fingers from the pop-up menu directly below Sec-
ondary Click, it will make tapping with one finger the standard left-click and tapping
with two fingers the right-click. Other right-click trackpad options are also available.

