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— A variable is a named container for data

— Variables in C# are typed, so they can only hold one type of
data (e.g., an integer, a float, a string)

— Variables need to be declared to be used
*int x;

— Assigning a value to a variable is called defining the variable
*x = 5;

— A literal is a value that is entered into your code and can be
assigned to a variable
« The 5 above is an integer literal
- string literals are surrounded by double quotes: "Hello World!"

- float literals are followed bv anf: 3.14f
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= bool — A 1-bit True or False Value
— Short for Boolean
— Named after George Boole (an English mathematician)

— bools in C# actually use more than 1-bit of space

* The smallest addressable memory chunk on a 32-bit system is 32
bits.

* The smallest on a 64-bit system is 64 bits.
— Literal examples: true false

— bool verified = true;
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" int — A 32-bit Integer
— Stores a single integer number
* Integers are numbers with no fractional or decimal element
— int math is very fast and accurate

— Can store numbers between —2,147,483,648 and
2,147,483,647

— 31 bits used for number and 1 bit used for sign
— Literal examples: 1 34567 -48198

— int nonFractionalNumber 12345;
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= float — A 32-bit Decimal Number

— Stores a floating-point number with a decimal element
* A floating-point number is stored in something like scientific notation
« Scientific notation is numbers in the format a*10P: 300 is 3*102

— Floating-point numbers are stored in the format a*2b
- 23 bits are used for the significand (the a part)
- 8 bits are used for the exponent (the P part)
+ 1 bit determines whether the number is positive or negative

— Floats are inaccurate for large numbers and for numbers
between -1 and 1

 There is no accurate float representation for 1/3
— Literal examples: 3.14f 123f 123.456f
— float notPreciselyOneThird = 1.0f / 3.0f;
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— Single character represented by 16 bits of information

— Uses Unicode values for the characters

 Unicode represents 110,000 different characters from over 100
different character sets and languages

— Floats are inaccurate for large numbers and for numbers
between -1 and 1

 There is no accurate float representation for 1/ 3
— Uppercase and lowercase letters are different values!
— char literals are surrounded by single quotes
— Literal examples: ‘A’ ‘a’ "\t
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= string — A Series of 16-bit Characters

— Stores from no characters ("") to an entire novel

- Max length is 2 billion chars; 12,000 times the length of Hamlet
— string literals are surrounded by double quotes
— Literal examples: "Hello" " "\tTab"

— string theFirstLineOfHamlet = "Who's there?";

— You can access individual characters via bracket access
* char theCharW = theFirstLineOfHamlet[O0];
* char questionMark = theFirstLineOfHamlet[1l1];

— The length of a string is accessed via .Length

*int len = theFirstLineOfHamlet.Length;
— Sets lento 12
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= class — A Collection of Functions and Data
— A class creates a new variable type
— Covered extensively in Chapter 25, "Classes"

— Already used in the HelloWorld project
public class HelloWorld : MonoBehaviour {
void Start() {
print("Hello World!");

}
— Everything between the braces { } is part of the class
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Use camelCase for almost everything

= Variable names start with lowercase:

— thisVariable anotherVariable bob

* Function nhames start with uppercase:
— ThatFunction() Start () Update ()

= Class names start with uppercase:
— SomeClass GameObject HeroShip

= Private variables start with underscore:

— privateVariable _hiddenvVariable

= Static variables use SNAKE CASE:

— STATIC_VAR NUM_INSTANCES
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— Used for position of objects in 3D
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— Used for position of objects in 3D

Vector3 vec = new Vector3( 3, 4, 0 );

— Instance variables and functions
vec.x — The x component of the vector
vec.y — The y component of the vector
vec.z — The z component of the vector
vec .magnitude — The length of the vector

vec.Normalize () — New Vector3 in the same direction at unit length

— Static class variables and functions
Vector3.zero — Shorthand for new vector3( 0, 0, 0 );

Vector3.Dot( vA, vB ); — Dot product of vA and vB
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Color.red = new
Color.green = new
Color.blue = new

// Secondary Colors:

Color.cyan = new
Color.magenta = new
Color.yellow = new

Color(1,
Color (0,
Color (0,

0, 0,
1, 0,
0, 1,

Blue

1); // Solid red
1); // Solid green
1); // Solid blue

Cyan, Magenta, and Yellow

Color (0,
Color(1,
Color(1,

1, 1,
OPfin.
0.92f,

1); // Cyan, a bright greenish blue
1); // Magenta, a pinkish purple
0.016f, 1); // A nice-looking yellow

15




Important Unity Variable Types

= Color — A color with transparency information

— Static class variables and functions

// Primary Colors: Red, Green, and Blue

Color.red = new Color(l, 0, 0, 1); // Solid red
Color.green = new Color(0, 1, 0, 1); // Solid green
Color.blue = new Color(0, 0, 1, 1); // Solid blue

// Secondary Colors: Cyan, Magenta, and Yellow

Color.cyan = new Color(0, 1, 1, 1); // Cyan, a bright greenish blue
Color.magenta = new Color(l, 0, 1, 1); // Magenta, a pinkish purple
Color.yellow new Color(l, 0.92f, 0.016f, 1); // A nice-looking yellow
// As you can imagine, a standard yellow would be new Color(1l,1,0,1), but

PEARSON 15




Important Unity Variable Types

= Color — A color with transparency information

— Static class variables and functions

// Primary Colors: Red, Green, and Blue

Color.red = new Color(l, 0, 0, 1); // Solid red
Color.green = new Color(0, 1, 0, 1); // Solid green
Color.blue = new Color(0, 0, 1, 1); // Solid blue

// Secondary Colors: Cyan, Magenta, and Yellow

Color.cyan = new Color(0, 1, 1, 1); // Cyan, a bright greenish blue
Color.magenta = new Color(l, 0, 1, 1); // Magenta, a pinkish purple
Color.yellow new Color(l, 0.92f, 0.016f, 1); // A nice-looking yellow
// As you can imagine, a standard yellow would be new Color(1l,1,0,1), but
// in Unity's opinion, this color looks better.

PEARSON 15



Important Unity Variable Types

= Color — A color with transparency information

— Static class variables and functions

// Primary Colors: Red, Green, and Blue

Color.red = new Color(l, 0, 0, 1); // Solid red
Color.green = new Color(0, 1, 0, 1); // Solid green
Color.blue = new Color(0, 0, 1, 1); // Solid blue

// Secondary Colors: Cyan, Magenta, and Yellow

Color.cyan = new Color(0, 1, 1, 1); // Cyan, a bright greenish blue
Color.magenta = new Color(l, 0, 1, 1); // Magenta, a pinkish purple
Color.yellow new Color(l, 0.92f, 0.016f, 1); // A nice-looking yellow
// As you can imagine, a standard yellow would be new Color(1l,1,0,1), but
// in Unity's opinion, this color looks better.

PEARSON 15



Important Unity Variable Types

= Color — A color with transparency information

— Static class variables and functions
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Color.red = new Color(l, 0, 0, 1); // Solid red
Color.green = new Color(0, 1, 0, 1); // Solid green
Color.blue = new Color(0, 0, 1, 1); // Solid blue

// Secondary Colors: Cyan, Magenta, and Yellow

Color.cyan = new Color(0, 1, 1, 1); // Cyan, a bright greenish blue
Color.magenta = new Color(l, 0, 1, 1); // Magenta, a pinkish purple

new Color(l, 0.92f, 0.016f, 1); // A nice-looking yellow
// As you can imagine, a standard yellow would be new Color(1l,1,0,1), but
// in Unity's opinion, this color looks better.

Color.yellow
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= Color — A color with transparency information

— Static class variables and functions

// Primary Colors: Red, Green, and Blue

Color.red new Color(l, 0, 0, 1); // Solid red
Color.green = new Color(0, 1, 0, 1); // Solid green
new Color(0, 0, 1, 1); // Solid blue

Color.blue

// Secondary Colors: Cyan, Magenta, and Yellow

Color.cyan new Color(0, 1, 1, 1); // Cyan, a bright greenish blue
Color.magenta = new Color(l, 0, 1, 1); // Magenta, a pinkish purple
Color.yellow new Color(l, 0.92f, 0.016f, 1); // A nice-looking yellow
// As you can imagine, a standard yellow would be new Color(1l,1,0,1), but
// in Unity's opinion, this color looks better.

// Black, White, and Clear

Color.black new Color(0, 0, 0, 1); // Solid black

Color.white = new Color(l, 1, 1, 1); // Solid white

new Color(0.5f, 0.5f, 0.5f, 1) // Gray

Color.gray
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// Primary Colors: Red, Green, and
Color.red = new Color(1, 0, O,
Color.green = new Color(0, 1, O,
Color.blue = new Color(0, 0, 1,

Blue

1); // Solid red
1); // Solid green
1); // Solid blue

// Secondary Colors: Cyan, Magenta, and Yellow

Color.cyan = new Color(0, 1, 1,
Color.magenta = new Color(1l, 0, 1,
Color.yellow = new Color(1l, 0.92f,

// As

// in Unity's opinion, this color

you can

// Black, White, and Clear

1); // Cyan, a bright greenish blue
1); // Magenta, a pinkish purple
0.016f, 1); // A nice-looking yellow

imagine, a standard yellow would be new Color(1,1,0,1), but

looks better.

Color.black = new Color(0, 0, 0, 1); // Solid black

Color.white = new Color(l, 1, 1, 1); // Solid white

Color.gray = new Color(0.5f, 0.5f, 0.5f, 1) // Gray

Color.grey = new Color(0.5f, 0.5f, 0.5f, 1) // British spelling of gray
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// Primary Colors: Red, Green, and
Color.red = new Color(1, 0, O,
Color.green = new Color(0, 1, O,

Color.blue new Color(0, 0, 1,

Blue

1); // Solid red
1); // Solid green
1); // Solid blue

// Secondary Colors: Cyan, Magenta, and Yellow

Color.cyan = new Color(0, 1, 1,
Color.magenta = new Color(1l, 0, 1,
Color.yellow = new Color(1l, 0.92f,

// As

// in Unity's opinion, this color

you can

// Black, White, and Clear

1); // Cyan, a bright greenish blue
1); // Magenta, a pinkish purple
0.016f, 1); // A nice-looking yellow

imagine, a standard yellow would be new Color(1,1,0,1), but

looks better.

Color.black = new Color(0, 0, 0, 1); // Solid black

Color.white = new Color(l, 1, 1, 1); // Solid white

Color.gray = new Color(0.5f, 0.5f, 0.5f, 1) // Gray

Color.grey = new Color(0.5f, 0.5f, 0.5f, 1) // British spelling of gray
Color.clear = new Color(0, 0, 0, 0); // Completely transparent

15




Important Unity Variable Types

PEARSON 16
B ——




Important Unity Variable Types

= Quaternion — Rotation information

PEARSON 16




Important Unity Variable Types

= Quaternion — Rotation information

— Based on three imaginary numbers and a scalar

PEARSON 16




Important Unity Variable Types

= Quaternion — Rotation information
— Based on three imaginary numbers and a scalar

— So, everyone uses Euler angles (e.g., X, y, z) to input rotation

PEARSON 16




Important Unity Variable Types

= Quaternion — Rotation information
— Based on three imaginary numbers and a scalar

— So, everyone uses Euler angles (e.g., X, y, z) to input rotation

Quaternion up45Deg = Quaternion.Euler( -45, 0, 0 );

— In Euler (pronounced "oiler") angles, x, y, & z are rotations
about those respective axes

— Quaternions are much better for interpolation and
calculations than Euler angles

 They also avoid Gimbal Lock (where two Euler axes align)

— Instance variables and functions
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= Quaternion — Rotation information
— Based on three imaginary numbers and a scalar

— So, everyone uses Euler angles (e.g., X, y, z) to input rotation

Quaternion up45Deg = Quaternion.Euler( -45, 0, 0 );

— In Euler (pronounced "oiler") angles, x, y, & z are rotations
about those respective axes

— Quaternions are much better for interpolation and
calculations than Euler angles

 They also avoid Gimbal Lock (where two Euler axes align)

— Instance variables and functions
up45Deg.eulerAngles — A Vector3 of the Euler rotations
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Mathf.Sin(x); // Computes the sine of x
Mathf.Cos(x); // .Tan(), .Asin(), .Acos(), & .Atan() also available

Mathf.Atan2( y, x ); // Gives you the angle to rotate around the z-axis to
// change something facing along the x-axis to face
// instead toward the point x, y.
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Mathf.Cos(x); // .Tan(), .Asin(), .Acos(), & .Atan() also available

Mathf.Atan2( y, x ); // Gives you the angle to rotate around the z-axis to
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Mathf.Sin(x);
Mathf.Cos (x);

Mathf.Atan2( y, x );

print (Mathf.PI);

Mathf.Min( 2, 3, 1 );
Mathf.Max( 2, 3, 1 );

Mathf.Round( 1.75f );

//
//

//
"
//

//
//
//
//

Computes the sine of x
.Tan(), .Asin(), .Acos(), & .Atan() also available

Gives you the angle to rotate around the z-axis to
change something facing along the x-axis to face
instead toward the point x, y.

3.141593; the ratio of circumference to diameter
1, the smallest of the numbers (float or int)
3, the largest of the numbers (float or int)

2, rounds up or down to the nearest number
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.Tan(), .Asin(), .Acos(), & .Atan() also available

Gives you the angle to rotate around the z-axis to
change something facing along the x-axis to face
instead toward the point x, y.

3.141593; the ratio of circumference to diameter
1, the smallest of the numbers (float or int)

3, the largest of the numbers (float or int)
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Mathf.Sin(x);
Mathf.Cos (x);

Mathf.Atan2( y, x );

print (Mathf.PI);

Mathf.Min( 2, 3, 1 );
Mathf.Max( 2, 3, 1 );

Mathf.Round( 1.75f );

Mathf.Ceil( 1.75f );

Mathf.Floor( 1.75f );

Mathf.Abs( -25 );

//
//

//
"
//

//
//
//
//
//
//
//

Computes the sine of x
.Tan(), .Asin(), .Acos(), & .Atan() also available

Gives you the angle to rotate around the z-axis to
change something facing along the x-axis to face
instead toward the point x, y.

3.141593; the ratio of circumference to diameter
1, the smallest of the numbers (float or int)

3, the largest of the numbers (float or int)

2, rounds up or down to the nearest number

2, rounds up to the next highest integer number
1, rounds down to the next lowest integer number

25, the absolute value of -25
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= Screen — Information about the display

— Static class variables and functions

Screen.width // The width of the screen in pixels
Screen.height // The height of the screen in pixels
Screen.showCursor = false; // Hide the cursor
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// e.g.,Mac OS X 10.9.3
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= Systeminfo — Information about the device/computer

— Static class variables and functions

SystemInfo.operatingSystem // The width of the screen in pixels
// e.g.,Mac OS X 10.9.3

SystemInfo.systemMemorySize // Amount of RAM
SystemInfo.supportsAccelerometer // Has accelerometer

SystemInfo.supportsGyroscope // Has gyroscope

PEARSON 19




Important Unity Variable Types

PEARSON 20
B ——




Important Unity Variable Types

= GameObject — Base class for all objects in scenes

PEARSON 20




Important Unity Variable Types

= GameObject — Base class for all objects in scenes

— Composed of components

PEARSON 20




Important Unity Variable Types

= GameObject — Base class for all objects in scenes

— Composed of components
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= GameObject — Base class for all objects in scenes

— Composed of components
GameObject go = new GameObject("MyGO");

— Always has a Transform component

— Instance variables and functions
go.name // The name of the GameOQObject ("MyGO0")
go.GetComponent<Transform> () // The Transform component
go.transform /I A shortcut to the Transform component
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Important Unity Variable Types

= GameObject — Base class for all objects in scenes

— Composed of components
GameObject go = new GameObject("MyGO");

— Always has a Transform component

— Instance variables and functions
go.name // The name of the GameOQObject ("MyGO0")

go.GetComponent<Transform> () // The Transform component
go.transform /I A shortcut to the Transform component
go.SetActive(false) // Make this GameObiject inactive

go.name // The name of the GameObject ("MyGO")

— GetComponent<>() is a generic method that can be used to
access any component attached to a GameObject
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© Inspector

GameObject name, tag, and layer |y ™ /Cube | Ustatic +
Tag |Untagged ¢ Llayer |Defaulr
Transform Component 7 = Transform Q&
sition
X 20.06618 LY [-2.015636 | Z 100.0087 |
Rotation
x [0 Jv [0 EAC ]
Scale
x 1 Jv 1 Jz [t ]

MeshFilter Component ¥ cbeueshriien i

v h;&ﬂlhsh R &,
Renderer Component |7 . ¥ Mesh Renderer -
Receive Shadows ™
¥ Materials
Size 1
Element 0 ) Default-Diffuse 5]
Use Light Probes o)

i ¥ i (¥ Box Collider @ =
Collider Component o .
Material 'None (Phvsic Material) R
Center
X [0 ly o 1z o |
Size
x 1 v [ 1z 1 ]
iai ¥ . Rigidbody Q=
Rigidbody Component 7 = .
Drag 0
Angular Drag 0.05
Use Gravity ™
Is Kinematic -
Interpolate [ None &
Collision Detection | Discrete sJ
¥ Constraints
i v Exam| wE-S
Script Component |7 ¢ Mseopeamplesipo -G8
True Or False o
Graduation Age 18
Golden Ratio 1618

GameObjects are composed of Components
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foreach (Transform tChild in tr) {..}

— Instance variables and functions
tr.position /l The position in world coordinates

PEARSON 22




Unity GameObject Components

* Transform component

— Controls position, rotation, and scale

Transform tr = go.GetComponent<Transform>();

— Also controls hierarchy of objects in the scene
tr.parent // The parent of this transform in the hierarchy

— Children can be iterated over with a foreach loop
foreach (Transform tChild in tr) {..}

— Instance variables and functions
tr.position /l The position in world coordinates

tr.localPosition /l The position relative to its parent

PEARSON 22




Unity GameObject Components

* Transform component

— Controls position, rotation, and scale

Transform tr = go.GetComponent<Transform>();

— Also controls hierarchy of objects in the scene
tr.parent // The parent of this transform in the hierarchy

— Children can be iterated over with a foreach loop
foreach (Transform tChild in tr) {..}

— Instance variables and functions

tr.position /l The position in world coordinates
tr.localPosition /l The position relative to its parent
tr.rotation // The rotation in world coordinates
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Unity GameObject Components

* Transform component

— Controls position, rotation, and scale

Transform tr = go.GetComponent<Transform>();

— Also controls hierarchy of objects in the scene
tr.parent // The parent of this transform in the hierarchy

— Children can be iterated over with a foreach loop
foreach (Transform tChild in tr) {..}

— Instance variables and functions

tr.position /l The position in world coordinates
tr.localPosition /l The position relative to its parent
tr.rotation // The rotation in world coordinates
tr.localScale // The scale (always in local coordinates)
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Unity GameObject Components

= MeshFilter component

— The model that you see
MeshFilter mf = go.GetComponent<MeshFilter>();

— Attaches a 3D model to a GameObject

— Is actually a 3D shell of the object (3D objects in games are
hollow inside

— This MeshFilter is rendered on screen by a MeshRenderer
component
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Unity GameObject Components

= Renderer component

— Draws the GameObject on screen

Renderer rend = go.GetComponent<Renderer>();

— Usually, this is a MeshRenderer
* Renderer is the superclass for MeshRenderer
- So, Renderer is almost always used in code

— Combines the MeshFilter with a Material (which contains
various Textures and a Shader)
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= Collider component

— The physical presence of the GameObejct
Collider coll = go.GetComponent<Collider>();

— There are four types of collider (in order of complexity)
- Sphere Collider — The fastest type. A ball or sphere.
« Capsule Collider — A pipe with spheres at each end. 2nd fastest.
« Box Collider — A rectangular solid. Useful for crates, cars, torsos, etc.

* Mesh Collider — Collider formed from a MeshFilter. Much slower!
— Only convex Mesh Collider can collide with other Mesh Colliders
— Much, much slower than the other three types

— Unity physics are performed by the NVIDIA PhysX engine

— Colliders will not move without a Rigidbody component



Unity GameObject Components

PEARSON 26
B ——




Unity GameObject Components

* Rigidbody component

PEARSON 26
B ——




Unity GameObject Components

* Rigidbody component

— The physical simulation of the GameObject

PEARSON 26




Unity GameObject Components

* Rigidbody component

— The physical simulation of the GameObiject
Rigidbody rigid = go.GetComponent<Rigidbody>();

PEARSON 26




Unity GameObject Components

* Rigidbody component

— The physical simulation of the GameObiject
Rigidbody rigid = go.GetComponent<Rigidbody>();

— Handles velocity, bounciness, friction, gravity, etc.

— Updates every FixedUpdate()
* This is exactly 50 times per second
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Unity GameObject Components

= (Script) components

— Any C# class that you write
HelloWorld hw = go.GetComponent<HelloWorld>();
— Because C# scripts are handled as components, several can
be attached to the same GameObject
* This enables more object-oriented programming
* You'll see several examples throughout the book
— Public fields in your scripts will appear as editable fields in
the Unity Inspector

* However, Unity will often alter the names of these fields a bit
— The class name ScopeExample becomes Scope Example (Script).
— The variable trueorFalse becomes True Or False.
— The variable graduationAge becomes Graduation Age.
— The variable goldenRatio becomes Golden Ratio.



Chapter 19 — Summary

PEARSON 28
B ———




Chapter 19 — Summary

= Learned about declaring and defining C# variables

PEARSON 28




Chapter 19 — Summary

= Learned about declaring and defining C# variables

= Learned several important C# variable types

PEARSON 28




Chapter 19 — Summary

= Learned about declaring and defining C# variables

= Learned several important C# variable types

— These all start with lowercase letters

PEARSON 28




Chapter 19 — Summary

= Learned about declaring and defining C# variables

= Learned several important C# variable types

— These all start with lowercase letters

= Learned naming conventions used in this book

PEARSON 28




Chapter 19 — Summary

Learned about declaring and defining C# variables

= Learned several important C# variable types

— These all start with lowercase letters
= Learned naming conventions used in this book

* Important Unity Variable Types

PEARSON 28




Chapter 19 — Summary

Learned about declaring and defining C# variables

= Learned several important C# variable types

— These all start with lowercase letters
= Learned naming conventions used in this book

* Important Unity Variable Types

— These all start with uppercase letters

PEARSON 28




Chapter 19 — Summary

Learned about declaring and defining C# variables

= Learned several important C# variable types

— These all start with lowercase letters
= Learned naming conventions used in this book

* Important Unity Variable Types

— These all start with uppercase letters

= Learned several Unity GameObject components

PEARSON 28




Chapter 19 — Summary

= Learned about declaring and defining C# variables

= Learned several important C# variable types

— These all start with lowercase letters
= Learned naming conventions used in this book

* Important Unity Variable Types

— These all start with uppercase letters
= Learned several Unity GameObject components

* Next chapter will introduce you to Boolean
operations and the conditionals used to control C#
code
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