CHAPTER 19

VARIABLES AND COMPONENTS

PEARSON 1
B ——

Topics

PEARSON 2
R ——

Topics

= Variables in C#

PEARSON 2
R ——

Topics

= Variables in C#

— Declaring and defining variables

PEARSON 2
B ———

Topics

= Variables in C#

— Declaring and defining variables

= Important C# Variable Types

PEARSON 2
B ———

Topics

= Variables in C#

— Declaring and defining variables
= Important C# Variable Types

* Naming Conventions

PEARSON 2
.

Topics

= Variables in C#

— Declaring and defining variables
= Important C# Variable Types
* Naming Conventions

= Important Unity Variable Types

PEARSON 2
B ——

Topics

= Variables in C#

— Declaring and defining variables
= Important C# Variable Types
* Naming Conventions
= Important Unity Variable Types

= Unity GameObject Components

PEARSON 2
B ——

Variables in C#

PEARSON 3
B ———

Variables in C#

= Quick recap:

PEARSON 3
B ———

Variables in C#

= Quick recap:

— A variable is a named container for data

PEARSON 3
.

Variables in C#

= Quick recap:
— A variable is a named container for data

— Variables in C# are typed, so they can only hold one type of
data (e.g., an integer, a float, a string)

PEARSON 3
—

Variables in C#

= Quick recap:
— A variable is a named container for data

— Variables in C# are typed, so they can only hold one type of
data (e.g., an integer, a float, a string)

— Variables need to be declared to be used

PEARSON 3
.

Variables in C#

= Quick recap:
— A variable is a named container for data

— Variables in C# are typed, so they can only hold one type of
data (e.g., an integer, a float, a string)

— Variables need to be declared to be used

int x;

PEARSON 3
.

Variables in C#

= Quick recap:
— A variable is a named container for data

— Variables in C# are typed, so they can only hold one type of
data (e.g., an integer, a float, a string)

— Variables need to be declared to be used

int x;

— Assigning a value to a variable is called defining the variable

PEARSON 3
.

Variables in C#

= Quick recap:
— A variable is a named container for data

— Variables in C# are typed, so they can only hold one type of
data (e.g., an integer, a float, a string)

— Variables need to be declared to be used

int x;

— Assigning a value to a variable is called defining the variable

*x = 5;

PEARSON 3
.

Variables in C#

= Quick recap:
— A variable is a named container for data

— Variables in C# are typed, so they can only hold one type of
data (e.g., an integer, a float, a string)

— Variables need to be declared to be used
int x;

— Assigning a value to a variable is called defining the variable
*x = 5;

— A literal is a value that is entered into your code and can be
assigned to a variable

PEARSON 3
B ——

Variables in C#

= Quick recap:
— A variable is a named container for data

— Variables in C# are typed, so they can only hold one type of
data (e.g., an integer, a float, a string)

— Variables need to be declared to be used
*int x;

— Assigning a value to a variable is called defining the variable
*x = 5;

— A literal is a value that is entered into your code and can be
assigned to a variable

« The 5 above is an integer literal

PEARSON 3
B ——

Variables in C#

= Quick recap:
— A variable is a named container for data

— Variables in C# are typed, so they can only hold one type of
data (e.g., an integer, a float, a string)

— Variables need to be declared to be used
*int x;

— Assigning a value to a variable is called defining the variable
*x = 5;

— A literal is a value that is entered into your code and can be
assigned to a variable
« The 5 above is an integer literal

- string literals are surrounded by double quotes: "Hello World!"

PEARSON 3
B ——

Variables in C#

= Quick recap:
— A variable is a named container for data

— Variables in C# are typed, so they can only hold one type of
data (e.g., an integer, a float, a string)

— Variables need to be declared to be used
*int x;

— Assigning a value to a variable is called defining the variable
*x = 5;

— A literal is a value that is entered into your code and can be
assigned to a variable
« The 5 above is an integer literal
- string literals are surrounded by double quotes: "Hello World!"

- float literals are followed bv anf: 3.14f

PEARSON 3
B

Important C# Variable Types

PEARSON 4
.

Important C# Variable Types

= Core C# variable types start with a lowercase
character

PEARSON 4
B ——

Important C# Variable Types

= Core C# variable types start with a lowercase
character

— bool

PEARSON 4
B ——

Important C# Variable Types

= Core C# variable types start with a lowercase
character

— bool

— int

PEARSON 4
B ——

Important C# Variable Types

= Core C# variable types start with a lowercase
character

— bool
— int

— float

PEARSON 4
B ——

Important C# Variable Types

= Core C# variable types start with a lowercase
character

— bool
— int
— float

— char

PEARSON 4
B ——

Important C# Variable Types

= Core C# variable types start with a lowercase
character

— bool
— int

— float
— char

— string

PEARSON 4
B

Important C# Variable Types

= Core C# variable types start with a lowercase
character

— bool
— int

— float
— char
— string

— class

PEARSON 4
B

Important C# Variable Types

PEARSON 5
.

Important C# Variable Types

= bool — A 1-bit True or False Value

PEARSON 5
B ——

Important C# Variable Types

= bool — A 1-bit True or False Value

— Short for Boolean

PEARSON 5
B ——

Important C# Variable Types

= bool — A 1-bit True or False Value
— Short for Boolean

— Named after George Boole (an English mathematician)

PEARSON 5
—

Important C# Variable Types

= bool — A 1-bit True or False Value
— Short for Boolean
— Named after George Boole (an English mathematician)

— bools in C# actually use more than 1-bit of space

PEARSON 5
—

Important C# Variable Types

= bool — A 1-bit True or False Value
— Short for Boolean
— Named after George Boole (an English mathematician)

— bools in C# actually use more than 1-bit of space

« The smallest addressable memory chunk on a 32-bit system is 32
bits.

PEARSON)
—_—

Important C# Variable Types

= bool — A 1-bit True or False Value
— Short for Boolean
— Named after George Boole (an English mathematician)

— bools in C# actually use more than 1-bit of space

« The smallest addressable memory chunk on a 32-bit system is 32
bits.

* The smallest on a 64-bit system is 64 bits.

PEARSON)
—_—

Important C# Variable Types

= bool — A 1-bit True or False Value
— Short for Boolean
— Named after George Boole (an English mathematician)

— bools in C# actually use more than 1-bit of space

* The smallest addressable memory chunk on a 32-bit system is 32
bits.

* The smallest on a 64-bit system is 64 bits.

— Literal examples: true false

PEARSON)
.

Important C# Variable Types

= bool — A 1-bit True or False Value
— Short for Boolean
— Named after George Boole (an English mathematician)

— bools in C# actually use more than 1-bit of space

* The smallest addressable memory chunk on a 32-bit system is 32
bits.

* The smallest on a 64-bit system is 64 bits.
— Literal examples: true false

— bool verified = true;

PEARSON 5
.

Important C# Variable Types

PEARSON 6
.

Important C# Variable Types

* int — A 32-bit Integer

PEARSON 6
B ——

Important C# Variable Types

" int — A 32-bit Integer

— Stores a single integer number

PEARSON 6
B ——

Important C# Variable Types
" int — A 32-bit Integer

— Stores a single integer number
* Integers are numbers with no fractional or decimal element

PEARSON 6
—

Important C# Variable Types

* int — A 32-bit Integer

— Stores a single integer number
* Integers are numbers with no fractional or decimal element

— int math is very fast and accurate

PEARSON 6
—

Important C# Variable Types

" int — A 32-bit Integer
— Stores a single integer number
* Integers are numbers with no fractional or decimal element
— int math is very fast and accurate

— Can store numbers between —2,147,483,648 and
2,147,483,647

PEARSON 6
.

Important C# Variable Types

" int — A 32-bit Integer
— Stores a single integer number
* Integers are numbers with no fractional or decimal element
— int math is very fast and accurate

— Can store numbers between —2,147,483,648 and
2,147,483,647

— 31 bits used for number and 1 bit used for sign

PEARSON 6
.

Important C# Variable Types

" int — A 32-bit Integer
— Stores a single integer number
* Integers are numbers with no fractional or decimal element
— int math is very fast and accurate

— Can store numbers between —2,147,483,648 and
2,147,483,647

— 31 bits used for number and 1 bit used for sign
— Literal examples: 1 34567 -48198

PEARSON 6
B

Important C# Variable Types

" int — A 32-bit Integer
— Stores a single integer number
* Integers are numbers with no fractional or decimal element
— int math is very fast and accurate

— Can store numbers between —2,147,483,648 and
2,147,483,647

— 31 bits used for number and 1 bit used for sign
— Literal examples: 1 34567 -48198

— int nonFractionalNumber 12345;

PEARSON 6
B

Important C# Variable Types

PEARSON 7
.

Important C# Variable Types

= float — A 32-bit Decimal Number

PEARSON 7
B ——

Important C# Variable Types

= float — A 32-bit Decimal Number

— Stores a floating-point number with a decimal element

PEARSON 7
—_—

Important C# Variable Types

= float — A 32-bit Decimal Number

— Stores a floating-point number with a decimal element
+ A floating-point number is stored in something like scientific notation

PEARSON 7
—

Important C# Variable Types

= float — A 32-bit Decimal Number

— Stores a floating-point number with a decimal element
* A floating-point number is stored in something like scientific notation
« Scientific notation is numbers in the format a*10P: 300 is 3*102

PEARSON 7
—

Important C# Variable Types

= float — A 32-bit Decimal Number

— Stores a floating-point number with a decimal element
* A floating-point number is stored in something like scientific notation
« Scientific notation is numbers in the format a*10P: 300 is 3*102

— Floating-point numbers are stored in the format a*2b

PEARSON 7
—_—

Important C# Variable Types

= float — A 32-bit Decimal Number

— Stores a floating-point number with a decimal element
* A floating-point number is stored in something like scientific notation
« Scientific notation is numbers in the format a*10P: 300 is 3*102

— Floating-point numbers are stored in the format a*2b
- 23 bits are used for the significand (the a part)

PEARSON 7
—_—

Important C# Variable Types

= float — A 32-bit Decimal Number

— Stores a floating-point number with a decimal element
* A floating-point number is stored in something like scientific notation
« Scientific notation is numbers in the format a*10P: 300 is 3*102

— Floating-point numbers are stored in the format a*2b
- 23 bits are used for the significand (the a part)
- 8 bits are used for the exponent (the P part)

PEARSON 7
.

Important C# Variable Types

= float — A 32-bit Decimal Number

— Stores a floating-point number with a decimal element
* A floating-point number is stored in something like scientific notation
« Scientific notation is numbers in the format a*10P: 300 is 3*102

— Floating-point numbers are stored in the format a*2b
- 23 bits are used for the significand (the a part)
- 8 bits are used for the exponent (the P part)
+ 1 bit determines whether the number is positive or negative

PEARSON =
B

Important C# Variable Types

= float — A 32-bit Decimal Number

— Stores a floating-point number with a decimal element
* A floating-point number is stored in something like scientific notation
« Scientific notation is numbers in the format a*10P: 300 is 3*102

— Floating-point numbers are stored in the format a*2b
- 23 bits are used for the significand (the a part)
- 8 bits are used for the exponent (the P part)
+ 1 bit determines whether the number is positive or negative

— Floats are inaccurate for large numbers and for numbers
between -1 and 1

PEARSON 7
B ——

Important C# Variable Types

= float — A 32-bit Decimal Number

— Stores a floating-point number with a decimal element
* A floating-point number is stored in something like scientific notation
« Scientific notation is numbers in the format a*10P: 300 is 3*102

— Floating-point numbers are stored in the format a*2b
- 23 bits are used for the significand (the a part)
- 8 bits are used for the exponent (the P part)
+ 1 bit determines whether the number is positive or negative
— Floats are inaccurate for large numbers and for numbers
between -1 and 1
 There is no accurate float representation for 1/3

PEARSON 7
B ——

Important C# Variable Types

= float — A 32-bit Decimal Number

— Stores a floating-point number with a decimal element
* A floating-point number is stored in something like scientific notation
« Scientific notation is numbers in the format a*10P: 300 is 3*102

— Floating-point numbers are stored in the format a*2b
- 23 bits are used for the significand (the a part)
- 8 bits are used for the exponent (the P part)
+ 1 bit determines whether the number is positive or negative

— Floats are inaccurate for large numbers and for numbers
between -1 and 1

 There is no accurate float representation for 1/3

— Literal examples: 3.14f 123f 123.456f

PEARSON =
B

Important C# Variable Types

= float — A 32-bit Decimal Number

— Stores a floating-point number with a decimal element
* A floating-point number is stored in something like scientific notation
« Scientific notation is numbers in the format a*10P: 300 is 3*102

— Floating-point numbers are stored in the format a*2b
- 23 bits are used for the significand (the a part)
- 8 bits are used for the exponent (the P part)
+ 1 bit determines whether the number is positive or negative

— Floats are inaccurate for large numbers and for numbers
between -1 and 1

 There is no accurate float representation for 1/3
— Literal examples: 3.14f 123f 123.456f
— float notPreciselyOneThird = 1.0f / 3.0f;

PEARSON 7
B

Important C# Variable Types

PEARSON 8
.

Important C# Variable Types

= char — A 16-bit Character

PEARSON 8
B ——

Important C# Variable Types

= char — A 16-bit Character

— Single character represented by 16 bits of information

PEARSON 8
—_—

Important C# Variable Types

= char — A 16-bit Character

— Single character represented by 16 bits of information

— Uses Unicode values for the characters

PEARSON 8
—

Important C# Variable Types

= char — A 16-bit Character

— Single character represented by 16 bits of information

— Uses Unicode values for the characters

 Unicode represents 110,000 different characters from over 100
different character sets and languages

PEARSON 8
—_—

Important C# Variable Types

= char — A 16-bit Character

— Single character represented by 16 bits of information

— Uses Unicode values for the characters

 Unicode represents 110,000 different characters from over 100
different character sets and languages

— Floats are inaccurate for large numbers and for numbers
between -1 and 1

PEARSON 8
.

Important C# Variable Types

= char — A 16-bit Character

— Single character represented by 16 bits of information

— Uses Unicode values for the characters

 Unicode represents 110,000 different characters from over 100
different character sets and languages

— Floats are inaccurate for large numbers and for numbers
between -1 and 1

 There is no accurate float representation for 1/ 3

PEARSON 8
B

Important C# Variable Types

= char — A 16-bit Character

— Single character represented by 16 bits of information

— Uses Unicode values for the characters

 Unicode represents 110,000 different characters from over 100
different character sets and languages

— Floats are inaccurate for large numbers and for numbers
between -1 and 1

 There is no accurate float representation for 1/ 3

— Uppercase and lowercase letters are different values!

PEARSON 8
B ——

Important C# Variable Types

= char — A 16-bit Character

— Single character represented by 16 bits of information

— Uses Unicode values for the characters

 Unicode represents 110,000 different characters from over 100
different character sets and languages

— Floats are inaccurate for large numbers and for numbers
between -1 and 1

 There is no accurate float representation for 1/ 3
— Uppercase and lowercase letters are different values!

— char literals are surrounded by single quotes

PEARSON 3
B

Important C# Variable Types

= char — A 16-bit Character

— Single character represented by 16 bits of information

— Uses Unicode values for the characters

 Unicode represents 110,000 different characters from over 100
different character sets and languages

— Floats are inaccurate for large numbers and for numbers
between -1 and 1

 There is no accurate float representation for 1/ 3
— Uppercase and lowercase letters are different values!
— char literals are surrounded by single quotes

— Literal examples: ‘A’ ‘a’ "\t

PEARSON 8
B

Important C# Variable Types

= char — A 16-bit Character

— Single character represented by 16 bits of information

— Uses Unicode values for the characters

 Unicode represents 110,000 different characters from over 100
different character sets and languages

— Floats are inaccurate for large numbers and for numbers
between -1 and 1

 There is no accurate float representation for 1/ 3
— Uppercase and lowercase letters are different values!
— char literals are surrounded by single quotes
— Literal examples: ‘A’ ‘a’ "\t

— char theLetterA = 'A';

PEARSON 8
B

Important C# Variable Types

PEARSON 9
.

Important C# Variable Types

= string — A Series of 16-bit Characters

PEARSON 9
B ——

Important C# Variable Types

= string — A Series of 16-bit Characters

— Stores from no characters ("") to an entire novel

PEARSON)
—_—

Important C# Variable Types

= string — A Series of 16-bit Characters

— Stores from no characters ("") to an entire novel
- Max length is 2 billion chars; 12,000 times the length of Hamlet

PEARSON)
—

Important C# Variable Types

= string — A Series of 16-bit Characters

— Stores from no characters ("") to an entire novel
- Max length is 2 billion chars; 12,000 times the length of Hamlet

— string literals are surrounded by double quotes

PEARSON 9
—_—

Important C# Variable Types

= string — A Series of 16-bit Characters

— Stores from no characters ("") to an entire novel
- Max length is 2 billion chars; 12,000 times the length of Hamlet

— string literals are surrounded by double quotes

— Literal examples: "Hello" " "\tTab"

PEARSON 9
—_—

Important C# Variable Types

= string — A Series of 16-bit Characters

— Stores from no characters ("") to an entire novel
- Max length is 2 billion chars; 12,000 times the length of Hamlet

— string literals are surrounded by double quotes
— Literal examples: "Hello" " "\tTab"

— string theFirstLineOfHamlet = "Who's there?";

PEARSON 9
.

Important C# Variable Types

= string — A Series of 16-bit Characters

— Stores from no characters ("") to an entire novel
- Max length is 2 billion chars; 12,000 times the length of Hamlet

— string literals are surrounded by double quotes
— Literal examples: "Hello" " "\tTab"
— string theFirstLineOfHamlet = "Who's there?";

— You can access individual characters via bracket access

PEARSON 9
B

Important C# Variable Types

= string — A Series of 16-bit Characters

— Stores from no characters ("") to an entire novel
- Max length is 2 billion chars; 12,000 times the length of Hamlet

— string literals are surrounded by double quotes
— Literal examples: "Hello" " "\tTab"
— string theFirstLineOfHamlet = "Who's there?";

— You can access individual characters via bracket access
* char theCharW = theFirstLineOfHamlet[O0];

PEARSON 9
B ——

Important C# Variable Types

= string — A Series of 16-bit Characters

— Stores from no characters ("") to an entire novel
- Max length is 2 billion chars; 12,000 times the length of Hamlet

— string literals are surrounded by double quotes
— Literal examples: "Hello" " "\tTab"
— string theFirstLineOfHamlet = "Who's there?";

— You can access individual characters via bracket access
* char theCharW = theFirstLineOfHamlet[O0];
* char questionMark = theFirstLineOfHamlet[1l1];

PEARSON 9
B ——

Important C# Variable Types

= string — A Series of 16-bit Characters

— Stores from no characters ("") to an entire novel
- Max length is 2 billion chars; 12,000 times the length of Hamlet

— string literals are surrounded by double quotes
— Literal examples: "Hello" " "\tTab"
— string theFirstLineOfHamlet = "Who's there?";

— You can access individual characters via bracket access
* char theCharW = theFirstLineOfHamlet[O0];
* char questionMark = theFirstLineOfHamlet[1l1];

— The length of a string is accessed via .Length

PEARSON 9
B

Important C# Variable Types

= string — A Series of 16-bit Characters

— Stores from no characters ("") to an entire novel
- Max length is 2 billion chars; 12,000 times the length of Hamlet

— string literals are surrounded by double quotes
— Literal examples: "Hello" " "\tTab"
— string theFirstLineOfHamlet = "Who's there?";

— You can access individual characters via bracket access
* char theCharW = theFirstLineOfHamlet[O0];
* char questionMark = theFirstLineOfHamlet[1l1];

— The length of a string is accessed via .Length
*int len = theFirstLineOfHamlet.Length;

PEARSON 9
B

Important C# Variable Types

= string — A Series of 16-bit Characters

— Stores from no characters ("") to an entire novel

- Max length is 2 billion chars; 12,000 times the length of Hamlet
— string literals are surrounded by double quotes
— Literal examples: "Hello" " "\tTab"

— string theFirstLineOfHamlet = "Who's there?";

— You can access individual characters via bracket access
* char theCharW = theFirstLineOfHamlet[O0];
* char questionMark = theFirstLineOfHamlet[1l1];

— The length of a string is accessed via .Length

*int len = theFirstLineOfHamlet.Length;
— Sets lento 12

PEARSON 9
B

Important C# Variable Types

PEARSON 10
.

Important C# Variable Types

= class — A Collection of Functions and Data

PEARSON 10

Important C# Variable Types

= class — A Collection of Functions and Data

— A class creates a new variable type

PEARSON 10

Important C# Variable Types

= class — A Collection of Functions and Data
— A class creates a new variable type

— Covered extensively in Chapter 25, "Classes"

PEARSON 10

Important C# Variable Types

= class — A Collection of Functions and Data
— A class creates a new variable type
— Covered extensively in Chapter 25, "Classes"

— Already used in the HelloWorld project
public class HelloWorld : MonoBehaviour {
void Start() {
print("Hello World!");

PEARSON 10

Important C# Variable Types

= class — A Collection of Functions and Data
— A class creates a new variable type
— Covered extensively in Chapter 25, "Classes"

— Already used in the HelloWorld project
public class HelloWorld : MonoBehaviour {
void Start() {
print("Hello World!");

}
— Everything between the braces { } is part of the class

PEARSON 10

C# Naming Conventions

PEARSON 11
B ———

C# Naming Conventions

= Use camelCase for almost everything

PEARSON 11

C# Naming Conventions

= Use camelCase for almost everything

= Variable names start with lowercase:

PEARSON 11

C# Naming Conventions

= Use camelCase for almost everything

= Variable names start with lowercase:

— thisVariable anotherVariable bob

PEARSON 11

C# Naming Conventions

= Use camelCase for almost everything

= Variable names start with lowercase:

— thisVariable anotherVariable bob

* Function nhames start with uppercase:

PEARSON 11
B

C# Naming Conventions

= Use camelCase for almost everything

= Variable names start with lowercase:

— thisVariable anotherVariable bob

* Function nhames start with uppercase:
— ThatFunction() Start () Update ()

PEARSON 11
—

C# Naming Conventions

Use camelCase for almost everything

= Variable names start with lowercase:
— thisVariable anotherVariable bob

* Function nhames start with uppercase:
— ThatFunction() Start () Update ()

= Class names start with uppercase:

PEARSON 11
—

C# Naming Conventions

Use camelCase for almost everything

= Variable names start with lowercase:
— thisVariable anotherVariable bob

* Function nhames start with uppercase:
— ThatFunction() Start () Update ()

= Class names start with uppercase:
— SomeClass GameObject HeroShip

PEARSON 11
—

C# Naming Conventions

Use camelCase for almost everything

= Variable names start with lowercase:

— thisVariable anotherVariable bob

* Function nhames start with uppercase:
— ThatFunction() Start () Update ()

= Class names start with uppercase:
— SomeClass GameObject HeroShip

= Private variables start with underscore:

PEARSON 11
—

C# Naming Conventions

Use camelCase for almost everything

= Variable names start with lowercase:

— thisVariable anotherVariable bob

* Function nhames start with uppercase:
— ThatFunction() Start () Update ()

= Class names start with uppercase:
— SomeClass GameObject HeroShip

= Private variables start with underscore:

— privateVariable _hiddenvVariable

PEARSON 11
—

C# Naming Conventions

Use camelCase for almost everything

= Variable names start with lowercase:

— thisVariable anotherVariable bob

* Function nhames start with uppercase:
— ThatFunction() Start () Update ()

= Class names start with uppercase:
— SomeClass GameObject HeroShip

= Private variables start with underscore:

— privateVariable _hiddenvVariable

= Static variables use SNAKE CASE:

PEARSON 11
—

C# Naming Conventions

Use camelCase for almost everything

= Variable names start with lowercase:

— thisVariable anotherVariable bob

* Function nhames start with uppercase:
— ThatFunction() Start () Update ()

= Class names start with uppercase:
— SomeClass GameObject HeroShip

= Private variables start with underscore:

— privateVariable _hiddenvVariable

= Static variables use SNAKE CASE:

— STATIC_VAR NUM_INSTANCES

PEARSON 11
.

Important Unity Variable Types

PEARSON 12
B ——

Important Unity Variable Types

= Because they are classes, important Unity variable
types all start with an uppercase character

PEARSON 12

Important Unity Variable Types

= Because they are classes, important Unity variable
types all start with an uppercase character

— Vector3

PEARSON 12

Important Unity Variable Types

= Because they are classes, important Unity variable
types all start with an uppercase character

— Vector3

— Color

PEARSON 12

Important Unity Variable Types

= Because they are classes, important Unity variable
types all start with an uppercase character

— Vector3
— Color

— Quaternion

PEARSON 12

Important Unity Variable Types

= Because they are classes, important Unity variable
types all start with an uppercase character

— Vector3

— Color

— Quaternion
— Mathf

PEARSON 12

Important Unity Variable Types

= Because they are classes, important Unity variable
types all start with an uppercase character

— Vector3

— Color

— Quaternion
— Mathf

— Screen

PEARSON 12

Important Unity Variable Types

= Because they are classes, important Unity variable
types all start with an uppercase character

— Vector3

— Color

— Quaternion
— Mathf

— Screen

— Systeminfo

PEARSON 12

Important Unity Variable Types

= Because they are classes, important Unity variable
types all start with an uppercase character

— Vector3

— Color

— Quaternion
— Mathf

— Screen

— Systeminfo

— GameObject

PEARSON 12

Important Unity Variable Types

PEARSON 13
B ——

Important Unity Variable Types

= Vector3 — A collection of 3 floats

PEARSON 13

Important Unity Variable Types

= Vector3 — A collection of 3 floats

— Used for position of objects in 3D

PEARSON 13

Important Unity Variable Types

= Vector3 — A collection of 3 floats

— Used for position of objects in 3D

Vector3 vec = new Vector3(3, 4, 0);

PEARSON 13

Important Unity Variable Types

= Vector3 — A collection of 3 floats

— Used for position of objects in 3D

Vector3 vec = new Vector3(3, 4, 0);

— Instance variables and functions
vec.x — The x component of the vector
vec.y — The y component of the vector
vec.z — The z component of the vector
vec .magnitude — The length of the vector

vec.Normalize () — New Vector3 in the same direction at unit length

PEARSON 13

Important Unity Variable Types

= Vector3 — A collection of 3 floats

— Used for position of objects in 3D

Vector3 vec = new Vector3(3, 4, 0);

— Instance variables and functions
vec.x — The x component of the vector
vec.y — The y component of the vector
vec.z — The z component of the vector
vec .magnitude — The length of the vector

vec.Normalize () — New Vector3 in the same direction at unit length

— Static class variables and functions

PEARSON 13

Important Unity Variable Types

= Vector3 — A collection of 3 floats

— Used for position of objects in 3D

Vector3 vec = new Vector3(3, 4, 0);

— Instance variables and functions
vec.x — The x component of the vector
vec.y — The y component of the vector
vec.z — The z component of the vector
vec .magnitude — The length of the vector

vec.Normalize () — New Vector3 in the same direction at unit length

— Static class variables and functions
Vector3.zero — Shorthand for new vector3(0, 0, 0);

PEARSON 13

Important Unity Variable Types

= Vector3 — A collection of 3 floats

— Used for position of objects in 3D

Vector3 vec = new Vector3(3, 4, 0);

— Instance variables and functions
vec.x — The x component of the vector
vec.y — The y component of the vector
vec.z — The z component of the vector
vec .magnitude — The length of the vector

vec.Normalize () — New Vector3 in the same direction at unit length

— Static class variables and functions
Vector3.zero — Shorthand for new vector3(0, 0, 0);

Vector3.Dot(vA, vB); — Dot product of vA and vB

PEARSON 13

Important Unity Variable Types

PEARSON 14
B ——

Important Unity Variable Types

= Color — A color with transparency information

PEARSON 14

Important Unity Variable Types

= Color — A color with transparency information

— 4 floats for red, green, blue, and alpha (all between 0 and 1)

PEARSON 14

Important Unity Variable Types

= Color — A color with transparency information

— 4 floats for red, green, blue, and alpha (all between 0 and 1)
Color col = new Color(0.5f, 0.5f, 0, 1f);

PEARSON 14

Important Unity Variable Types

= Color — A color with transparency information

— 4 floats for red, green, blue, and alpha (all between 0 and 1)
Color col = new Color(0.5f, 0.5f, 0, 1f);
Color col = new Color(1f, 0f, 0f); //Alphais optional

— In the Unity color picker, the RGBA values are in the range
0-255. These are then mapped to 0-1f.

— Instance variables and functions
col.r — The red component of the vector
col.g— The green component of the vector

col.b — The blue component of the vector

PEARSON 14

Important Unity Variable Types

= Color — A color with transparency information

— 4 floats for red, green, blue, and alpha (all between 0 and 1)
Color col = new Color(0.5f, 0.5f, 0, 1f);
Color col = new Color(1f, 0f, 0f); //Alphais optional

— In the Unity color picker, the RGBA values are in the range
0-255. These are then mapped to 0-1f.

— Instance variables and functions
col.r — The red component of the vector
col.g— The green component of the vector
col.b — The blue component of the vector

col.a — The alpha component of the vector

PEARSON 14

Important Unity Variable Types

PEARSON 15
B ——

Important Unity Variable Types

= Color — A color with transparency information

PEARSON 15

Important Unity Variable Types

= Color — A color with transparency information

— Static class variables and functions

PEARSON 15

Important Unity Variable Types

= Color — A color with transparency information

— Static class variables and functions

// Primary Colors: Red, Green, and Blue

PEARSON 15

Important Unity Variable Types

= Color — A color with transparency information
— Static class variables and functions

// Primary Colors: Red, Green, and Blue
Color.red = new Color(l, 0, 0, 1); // Solid red

PEARSON 15

Important Unity Variable Types

= Color — A color with transparency information

— Static class variables and functions

// Primary Colors: Red, Green, and Blue
Color.red = new Color(l, 0, 0, 1); // Solid red
Color.green = new Color(0, 1, 0, 1); // Solid green

PEARSON 15

Important Unity Variable Types

= Color — A color with transparency information

— Static class variables and functions
// Primary Colors: Red, Green, and Blue
Color.red new Color(l, 0, 0, 1); // Solid red
Color.green new Color(0, 1, 0, 1); // Solid green
Color.blue new Color(0, 0, 1, 1); // Solid blue

PEARSON 15

Important Unity Variable Types

= Color — A color with transparency information

— Static class variables and functions
// Primary Colors: Red, Green, and Blue
Color.red new Color(l, 0, 0, 1); // Solid red
Color.green new Color(0, 1, 0, 1); // Solid green
Color.blue new Color(0, 0, 1, 1); // Solid blue

PEARSON 15

Important Unity Variable Types

= Color — A color with transparency information

— Static class variables and functions

// Primary Colors: Red, Green, and Blue
new Color(l, 0, 0, 1); // Solid red
new Color(0, 1, 0, 1); // Solid green
new Color(0, 0, 1, 1); // Solid blue

Color.red
Color.green
Color.blue

// Secondary Colors: Cyan, Magenta, and Yellow

PEARSON 15

Important Unity Variable Types

= Color — A color with transparency information

— Static class variables and functions

// Primary Colors: Red, Green, and Blue
new Color(l, 0, 0, 1); // Solid red
new Color(0, 1, 0, 1); // Solid green
new Color(0, 0, 1, 1); // Solid blue

Color.red
Color.green
Color.blue

// Secondary Colors: Cyan, Magenta, and Yellow
Color.cyan = new Color(0, 1, 1, 1); // Cyan, a bright greenish blue

PEARSON 15

Important Unity Variable Types

= Color — A color with transparency information

— Static class variables and functions

// Primary Colors: Red, Green, and Blue

Color.red = new Color(l, 0, 0, 1); // Solid red
Color.green = new Color(0, 1, 0, 1); // Solid green
Color.blue = new Color(0, 0, 1, 1); // Solid blue

// Secondary Colors: Cyan, Magenta, and Yellow
Color.cyan = new Color(0, 1, 1, 1); // Cyan, a bright greenish blue
Color.magenta = new Color(l, 0, 1, 1); // Magenta, a pinkish purple

PEARSON 15

Important Unity Variable Types

= Color — A color with transparency information

— Static class variables and functions

// Primary Colors: Red, Green, and

PEARSON
—_—

Color.red = new
Color.green = new
Color.blue = new

// Secondary Colors:

Color.cyan = new
Color.magenta = new
Color.yellow = new

Color(1,
Color (0,
Color (0,

0, 0,
1, 0,
0, 1,

Blue

1); // Solid red
1); // Solid green
1); // Solid blue

Cyan, Magenta, and Yellow

Color (0,
Color(1,
Color(1,

1, 1,
OPfin.
0.92f,

1); // Cyan, a bright greenish blue
1); // Magenta, a pinkish purple
0.016f, 1); // A nice-looking yellow

15

Important Unity Variable Types

= Color — A color with transparency information

— Static class variables and functions

// Primary Colors: Red, Green, and Blue

Color.red = new Color(l, 0, 0, 1); // Solid red
Color.green = new Color(0, 1, 0, 1); // Solid green
Color.blue = new Color(0, 0, 1, 1); // Solid blue

// Secondary Colors: Cyan, Magenta, and Yellow

Color.cyan = new Color(0, 1, 1, 1); // Cyan, a bright greenish blue
Color.magenta = new Color(l, 0, 1, 1); // Magenta, a pinkish purple
Color.yellow new Color(l, 0.92f, 0.016f, 1); // A nice-looking yellow
// As you can imagine, a standard yellow would be new Color(1l,1,0,1), but

PEARSON 15

Important Unity Variable Types

= Color — A color with transparency information

— Static class variables and functions

// Primary Colors: Red, Green, and Blue

Color.red = new Color(l, 0, 0, 1); // Solid red
Color.green = new Color(0, 1, 0, 1); // Solid green
Color.blue = new Color(0, 0, 1, 1); // Solid blue

// Secondary Colors: Cyan, Magenta, and Yellow

Color.cyan = new Color(0, 1, 1, 1); // Cyan, a bright greenish blue
Color.magenta = new Color(l, 0, 1, 1); // Magenta, a pinkish purple
Color.yellow new Color(l, 0.92f, 0.016f, 1); // A nice-looking yellow
// As you can imagine, a standard yellow would be new Color(1l,1,0,1), but
// in Unity's opinion, this color looks better.

PEARSON 15

Important Unity Variable Types

= Color — A color with transparency information

— Static class variables and functions

// Primary Colors: Red, Green, and Blue

Color.red = new Color(l, 0, 0, 1); // Solid red
Color.green = new Color(0, 1, 0, 1); // Solid green
Color.blue = new Color(0, 0, 1, 1); // Solid blue

// Secondary Colors: Cyan, Magenta, and Yellow

Color.cyan = new Color(0, 1, 1, 1); // Cyan, a bright greenish blue
Color.magenta = new Color(l, 0, 1, 1); // Magenta, a pinkish purple
Color.yellow new Color(l, 0.92f, 0.016f, 1); // A nice-looking yellow
// As you can imagine, a standard yellow would be new Color(1l,1,0,1), but
// in Unity's opinion, this color looks better.

PEARSON 15

Important Unity Variable Types

= Color — A color with transparency information

— Static class variables and functions

// Primary Colors: Red, Green, and Blue

Color.red = new Color(l, 0, 0, 1); // Solid red
Color.green = new Color(0, 1, 0, 1); // Solid green
Color.blue = new Color(0, 0, 1, 1); // Solid blue

// Secondary Colors: Cyan, Magenta, and Yellow

Color.cyan = new Color(0, 1, 1, 1); // Cyan, a bright greenish blue
Color.magenta = new Color(l, 0, 1, 1); // Magenta, a pinkish purple

new Color(l, 0.92f, 0.016f, 1); // A nice-looking yellow
// As you can imagine, a standard yellow would be new Color(1l,1,0,1), but
// in Unity's opinion, this color looks better.

Color.yellow

// Black, White, and Clear

PEARSON 15

Important Unity Variable Types

= Color — A color with transparency information

— Static class variables and functions

// Primary Colors: Red, Green, and Blue

Color.red = new Color(l, 0, 0, 1); // Solid red
Color.green = new Color(0, 1, 0, 1); // Solid green
Color.blue = new Color(0, 0, 1, 1); // Solid blue

// Secondary Colors: Cyan, Magenta, and Yellow

Color.cyan = new Color(0, 1, 1, 1); // Cyan, a bright greenish blue
Color.magenta = new Color(l, 0, 1, 1); // Magenta, a pinkish purple
Color.yellow new Color(l, 0.92f, 0.016f, 1); // A nice-looking yellow
// As you can imagine, a standard yellow would be new Color(1l,1,0,1), but
// in Unity's opinion, this color looks better.

// Black, White, and Clear
Color.black = new Color(0, 0, 0, 1); // Solid black

PEARSON 15

Important Unity Variable Types

= Color — A color with transparency information

— Static class variables and functions

// Primary Colors: Red, Green, and Blue

Color.red new Color(l, 0, 0, 1); // Solid red
Color.green = new Color(0, 1, 0, 1); // Solid green
Color.blue new Color(0, 0, 1, 1); // Solid blue

// Secondary Colors: Cyan, Magenta, and Yellow

Color.cyan new Color(0, 1, 1, 1); // Cyan, a bright greenish blue
Color.magenta = new Color(l, 0, 1, 1); // Magenta, a pinkish purple
Color.yellow new Color(l, 0.92f, 0.016f, 1); // A nice-looking yellow
// As you can imagine, a standard yellow would be new Color(1l,1,0,1), but
// in Unity's opinion, this color looks better.

// Black, White, and Clear
Color.black new Color(0, 0, 0, 1); // Solid black
Color.white new Color(l, 1, 1, 1); // Solid white

PEARSON 15

Important Unity Variable Types

= Color — A color with transparency information

— Static class variables and functions

// Primary Colors: Red, Green, and Blue

Color.red new Color(l, 0, 0, 1); // Solid red
Color.green = new Color(0, 1, 0, 1); // Solid green
new Color(0, 0, 1, 1); // Solid blue

Color.blue

// Secondary Colors: Cyan, Magenta, and Yellow

Color.cyan new Color(0, 1, 1, 1); // Cyan, a bright greenish blue
Color.magenta = new Color(l, 0, 1, 1); // Magenta, a pinkish purple
Color.yellow new Color(l, 0.92f, 0.016f, 1); // A nice-looking yellow
// As you can imagine, a standard yellow would be new Color(1l,1,0,1), but
// in Unity's opinion, this color looks better.

// Black, White, and Clear

Color.black new Color(0, 0, 0, 1); // Solid black

Color.white = new Color(l, 1, 1, 1); // Solid white

new Color(0.5f, 0.5f, 0.5f, 1) // Gray

Color.gray

PEARSON 15

Important Unity

Variable Types

= Color — A color with transparency information

— Static class variables and functions

PEARSON
.

// Primary Colors: Red, Green, and
Color.red = new Color(1, 0, O,
Color.green = new Color(0, 1, O,
Color.blue = new Color(0, 0, 1,

Blue

1); // Solid red
1); // Solid green
1); // Solid blue

// Secondary Colors: Cyan, Magenta, and Yellow

Color.cyan = new Color(0, 1, 1,
Color.magenta = new Color(1l, 0, 1,
Color.yellow = new Color(1l, 0.92f,

// As

// in Unity's opinion, this color

you can

// Black, White, and Clear

1); // Cyan, a bright greenish blue
1); // Magenta, a pinkish purple
0.016f, 1); // A nice-looking yellow

imagine, a standard yellow would be new Color(1,1,0,1), but

looks better.

Color.black = new Color(0, 0, 0, 1); // Solid black

Color.white = new Color(l, 1, 1, 1); // Solid white

Color.gray = new Color(0.5f, 0.5f, 0.5f, 1) // Gray

Color.grey = new Color(0.5f, 0.5f, 0.5f, 1) // British spelling of gray

15

Important Unity

Variable Types

= Color — A color with transparency information

— Static class variables and functions

PEARSON
B

// Primary Colors: Red, Green, and
Color.red = new Color(1, 0, O,
Color.green = new Color(0, 1, O,

Color.blue new Color(0, 0, 1,

Blue

1); // Solid red
1); // Solid green
1); // Solid blue

// Secondary Colors: Cyan, Magenta, and Yellow

Color.cyan = new Color(0, 1, 1,
Color.magenta = new Color(1l, 0, 1,
Color.yellow = new Color(1l, 0.92f,

// As

// in Unity's opinion, this color

you can

// Black, White, and Clear

1); // Cyan, a bright greenish blue
1); // Magenta, a pinkish purple
0.016f, 1); // A nice-looking yellow

imagine, a standard yellow would be new Color(1,1,0,1), but

looks better.

Color.black = new Color(0, 0, 0, 1); // Solid black

Color.white = new Color(l, 1, 1, 1); // Solid white

Color.gray = new Color(0.5f, 0.5f, 0.5f, 1) // Gray

Color.grey = new Color(0.5f, 0.5f, 0.5f, 1) // British spelling of gray
Color.clear = new Color(0, 0, 0, 0); // Completely transparent

15

Important Unity Variable Types

PEARSON 16
B ——

Important Unity Variable Types

= Quaternion — Rotation information

PEARSON 16

Important Unity Variable Types

= Quaternion — Rotation information

— Based on three imaginary numbers and a scalar

PEARSON 16

Important Unity Variable Types

= Quaternion — Rotation information
— Based on three imaginary numbers and a scalar

— So, everyone uses Euler angles (e.g., X, y, z) to input rotation

PEARSON 16

Important Unity Variable Types

= Quaternion — Rotation information
— Based on three imaginary numbers and a scalar

— So, everyone uses Euler angles (e.g., X, y, z) to input rotation

Quaternion up45Deg = Quaternion.Euler(-45, 0, 0);

— In Euler (pronounced "oiler") angles, x, y, & z are rotations
about those respective axes

— Quaternions are much better for interpolation and
calculations than Euler angles

 They also avoid Gimbal Lock (where two Euler axes align)

— Instance variables and functions

PEARSON 16

Important Unity Variable Types

= Quaternion — Rotation information
— Based on three imaginary numbers and a scalar

— So, everyone uses Euler angles (e.g., X, y, z) to input rotation

Quaternion up45Deg = Quaternion.Euler(-45, 0, 0);

— In Euler (pronounced "oiler") angles, x, y, & z are rotations
about those respective axes

— Quaternions are much better for interpolation and
calculations than Euler angles

 They also avoid Gimbal Lock (where two Euler axes align)

— Instance variables and functions
up45Deg.eulerAngles — A Vector3 of the Euler rotations

PEARSON 16

Important Unity Variable Types

PEARSON 17
B ——

Important Unity Variable Types

= Mathf — A collection of static math functions

PEARSON 17

Important Unity Variable Types

= Mathf — A collection of static math functions

— Static class variables and functions

PEARSON 17

Important Unity Variable Types

= Mathf — A collection of static math functions

— Static class variables and functions

Mathf.Sin(x); // Computes the sine of x

PEARSON 17

Important Unity Variable Types

= Mathf — A collection of static math functions

— Static class variables and functions

Mathf.Sin(x); // Computes the sine of x

Mathf.Cos (x); // .Tan(), .Asin(), .Acos(), & .Atan() also available

PEARSON 17

Important Unity Variable Types

= Mathf — A collection of static math functions

— Static class variables and functions

PEARSON
—

Mathf.Sin(x); // Computes the sine of x
Mathf.Cos(x); // .Tan(), .Asin(), .Acos(), & .Atan() also available

Mathf.Atan2(y, x); // Gives you the angle to rotate around the z-axis to
// change something facing along the x-axis to face
// instead toward the point x, y.

17

Important Unity Variable Types

= Mathf — A collection of static math functions

— Static class variables and functions

Mathf.Sin(x); // Computes the sine of x
Mathf.Cos(x); // .Tan(), .Asin(), .Acos(), & .Atan() also available

Mathf.Atan2(y, x); // Gives you the angle to rotate around the z-axis to
// change something facing along the x-axis to face
// instead toward the point x, y.

print (Mathf.PI); // 3.141593; the ratio of circumference to diameter

PEARSON 17

Important Unity Variable Types

= Mathf — A collection of static math functions

— Static class variables and functions

Mathf.Sin(x); // Computes the sine of x
Mathf.Cos(x); // .Tan(), .Asin(), .Acos(), & .Atan() also available

Mathf.Atan2(y, x); // Gives you the angle to rotate around the z-axis to
// change something facing along the x-axis to face
// instead toward the point x, y.

print (Mathf.PI); // 3.141593; the ratio of circumference to diameter

Mathf.Min(2, 3, 1);// 1, the smallest of the numbers (float or int)

PEARSON 17

Important Unity Variable Types

= Mathf — A collection of static math functions

— Static class variables and functions

Mathf.Sin(x); // Computes the sine of x
Mathf.Cos(x); // .Tan(), .Asin(), .Acos(), & .Atan() also available

Mathf.Atan2(y, x); // Gives you the angle to rotate around the z-axis to
// change something facing along the x-axis to face
// instead toward the point x, y.

print (Mathf.PI); // 3.141593; the ratio of circumference to diameter
Mathf.Min(2, 3, 1);// 1, the smallest of the numbers (float or int)

Mathf.Max(2, 3, 1);// 3, the largest of the numbers (float or int)

PEARSON 17

Important Unity Variable Types

= Mathf — A collection of static math functions

— Static class variables and functions

PEARSON
—_—

Mathf.Sin(x);
Mathf.Cos (x);

Mathf.Atan2(y, x);

print (Mathf.PI);

Mathf.Min(2, 3, 1);
Mathf.Max(2, 3, 1);

Mathf.Round(1.75f);

//
//

//
"
//

//
//
//
//

Computes the sine of x
.Tan(), .Asin(), .Acos(), & .Atan() also available

Gives you the angle to rotate around the z-axis to
change something facing along the x-axis to face
instead toward the point x, y.

3.141593; the ratio of circumference to diameter
1, the smallest of the numbers (float or int)
3, the largest of the numbers (float or int)

2, rounds up or down to the nearest number

17

Important Unity Variable Types

= Mathf — A collection of static math functions

— Static class variables and functions

PEARSON
.

Mathf.Sin(x); //
Mathf.Cos(x); //
Mathf.Atan2(y, x); //
//
//
print (Mathf.PI); //

Mathf.Min(2, 3, 1);//
Mathf.Max(2, 3, 1);//
Mathf.Round(1.75f);//

Mathf.Ceil(1.75f); //

Computes the sine of x
.Tan(), .Asin(), .Acos(), & .Atan() also available

Gives you the angle to rotate around the z-axis to
change something facing along the x-axis to face
instead toward the point x, y.

3.141593; the ratio of circumference to diameter
1, the smallest of the numbers (float or int)

3, the largest of the numbers (float or int)

2, rounds up or down to the nearest number

2, rounds up to the next highest integer number

17

Important Unity Variable Types

= Mathf — A collection of static math functions

— Static class variables and functions

Mathf.Sin(x); // Computes the sine of x
Mathf.Cos(x); // .Tan(), .Asin(), .Acos(), & .Atan() also available

Mathf.Atan2(y, x); // Gives you the angle to rotate around the z-axis to
// change something facing along the x-axis to face
// instead toward the point x, y.

print (Mathf.PI); // 3.141593; the ratio of circumference to diameter
Mathf.Min(2, 3, 1);// 1, the smallest of the numbers (float or int)
Mathf.Max(2, 3, 1);// 3, the largest of the numbers (float or int)
Mathf.Round(1.75f);// 2, rounds up or down to the nearest number
Mathf.Ceil(1.75f); // 2, rounds up to the next highest integer number

Mathf.Floor(1.75f);// 1, rounds down to the next lowest integer number

PEARSON 17

Important Unity Variable Types

= Mathf — A collection of static math functions

— Static class variables and functions

PEARSON
.

Mathf.Sin(x);
Mathf.Cos (x);

Mathf.Atan2(y, x);

print (Mathf.PI);

Mathf.Min(2, 3, 1);
Mathf.Max(2, 3, 1);

Mathf.Round(1.75f);

Mathf.Ceil(1.75f);

Mathf.Floor(1.75f);

Mathf.Abs(-25);

//
//

//
"
//

//
//
//
//
//
//
//

Computes the sine of x
.Tan(), .Asin(), .Acos(), & .Atan() also available

Gives you the angle to rotate around the z-axis to
change something facing along the x-axis to face
instead toward the point x, y.

3.141593; the ratio of circumference to diameter
1, the smallest of the numbers (float or int)

3, the largest of the numbers (float or int)

2, rounds up or down to the nearest number

2, rounds up to the next highest integer number
1, rounds down to the next lowest integer number

25, the absolute value of -25

17

Important Unity Variable Types

PEARSON 18
B ——

Important Unity Variable Types

= Screen — Information about the display

PEARSON 18

Important Unity Variable Types

= Screen — Information about the display

— Static class variables and functions

PEARSON 18

Important Unity Variable Types

= Screen — Information about the display

— Static class variables and functions
Screen.width // The width of the screen in pixels

PEARSON 18

Important Unity Variable Types

= Screen — Information about the display

— Static class variables and functions
Screen.width // The width of the screen in pixels

Screen.height // The height of the screen in pixels

PEARSON 18

Important Unity Variable Types

= Screen — Information about the display

— Static class variables and functions

Screen.width // The width of the screen in pixels
Screen.height // The height of the screen in pixels
Screen.showCursor = false; // Hide the cursor

PEARSON 18

Important Unity Variable Types

PEARSON 19
B ——

Important Unity Variable Types

= Systeminfo — Information about the device/computer

PEARSON 19

Important Unity Variable Types

= Systeminfo — Information about the device/computer

— Static class variables and functions

PEARSON 19

Important Unity Variable Types

= Systeminfo — Information about the device/computer

— Static class variables and functions

SystemInfo.operatingSystem // The width of the screen in pixels
// e.g.,Mac OS X 10.9.3

PEARSON 19

Important Unity Variable Types

= Systeminfo — Information about the device/computer

— Static class variables and functions

SystemInfo.operatingSystem // The width of the screen in pixels
// e.g.,Mac OS X 10.9.3

SystemInfo.systemMemorySize // Amount of RAM

PEARSON 19

Important Unity Variable Types

= Systeminfo — Information about the device/computer

— Static class variables and functions

SystemInfo.operatingSystem // The width of the screen in pixels
// e.g.,Mac OS X 10.9.3

SystemInfo.systemMemorySize // Amount of RAM
SystemInfo.supportsAccelerometer // Has accelerometer

PEARSON 19

Important Unity Variable Types

= Systeminfo — Information about the device/computer

— Static class variables and functions

SystemInfo.operatingSystem // The width of the screen in pixels
// e.g.,Mac OS X 10.9.3

SystemInfo.systemMemorySize // Amount of RAM
SystemInfo.supportsAccelerometer // Has accelerometer

SystemInfo.supportsGyroscope // Has gyroscope

PEARSON 19

Important Unity Variable Types

PEARSON 20
B ——

Important Unity Variable Types

= GameObject — Base class for all objects in scenes

PEARSON 20

Important Unity Variable Types

= GameObject — Base class for all objects in scenes

— Composed of components

PEARSON 20

Important Unity Variable Types

= GameObject — Base class for all objects in scenes

— Composed of components
GameObject go = new GameObject("MyGO");

PEARSON 20

Important Unity Variable Types

= GameObject — Base class for all objects in scenes

— Composed of components
GameObject go = new GameObject("MyGO");

— Always has a Transform component

— Instance variables and functions
go.name // The name of the GameOQObject ("MyGO0")
go.GetComponent<Transform> () // The Transform component
go.transform /I A shortcut to the Transform component

go.SetActive(false) // Make this GameObiject inactive

PEARSON 20

Important Unity Variable Types

= GameObject — Base class for all objects in scenes

— Composed of components
GameObject go = new GameObject("MyGO");

— Always has a Transform component

— Instance variables and functions
go.name // The name of the GameOQObject ("MyGO0")

go.GetComponent<Transform> () // The Transform component
go.transform /I A shortcut to the Transform component
go.SetActive(false) // Make this GameObiject inactive

go.name // The name of the GameObject ("MyGO")

PEARSON 20

Important Unity Variable Types

= GameObject — Base class for all objects in scenes

— Composed of components
GameObject go = new GameObject("MyGO");

— Always has a Transform component

— Instance variables and functions
go.name // The name of the GameOQObject ("MyGO0")

go.GetComponent<Transform> () // The Transform component
go.transform /I A shortcut to the Transform component
go.SetActive(false) // Make this GameObiject inactive

go.name // The name of the GameObject ("MyGO")

— GetComponent<>() is a generic method that can be used to
access any component attached to a GameObject

PEARSON 20

Unity GameObject Components

© Inspector

GameObject name, tag, and layer |y ™ /Cube | Ustatic +
Tag |Untagged ¢ Llayer |Defaulr
Transform Component 7 = Transform Q&
sition
X 20.06618 LY [-2.015636 | Z 100.0087 |
Rotation
x [0 Jv [0 EAC]
Scale
x 1 Jv 1 Jz [t]

MeshFilter Component ¥ cbeueshriien i

v h;&ﬂlhsh R &,
Renderer Component |7 . ¥ Mesh Renderer -
Receive Shadows ™
¥ Materials
Size 1
Element 0) Default-Diffuse 5]
Use Light Probes o)

i ¥ i (¥ Box Collider @ =
Collider Component o .
Material 'None (Phvsic Material) R
Center
X [0 ly o 1z o |
Size
x 1 v [1z 1]
iai ¥ . Rigidbody Q=
Rigidbody Component 7 = .
Drag 0
Angular Drag 0.05
Use Gravity ™
Is Kinematic -
Interpolate [None &
Collision Detection | Discrete sJ
¥ Constraints
i v Exam| wE-S
Script Component |7 ¢ Mseopeamplesipo -G8
True Or False o
Graduation Age 18
Golden Ratio 1618

GameObjects are composed of Components

PEARSON 21

Unity GameObject Components

PEARSON 22
B ——

Unity GameObject Components

= Transform component

PEARSON 22
B ——

Unity GameObject Components

= Transform component

— Controls position, rotation, and scale

PEARSON 22

Unity GameObject Components

= Transform component

— Controls position, rotation, and scale

Transform tr = go.GetComponent<Transform>();

PEARSON 22

Unity GameObject Components

* Transform component

— Controls position, rotation, and scale

Transform tr = go.GetComponent<Transform>();

— Also controls hierarchy of objects in the scene
tr.parent // The parent of this transform in the hierarchy

— Children can be iterated over with a foreach loop
foreach (Transform tChild in tr) {..}

— Instance variables and functions
tr.position /l The position in world coordinates

PEARSON 22

Unity GameObject Components

* Transform component

— Controls position, rotation, and scale

Transform tr = go.GetComponent<Transform>();

— Also controls hierarchy of objects in the scene
tr.parent // The parent of this transform in the hierarchy

— Children can be iterated over with a foreach loop
foreach (Transform tChild in tr) {..}

— Instance variables and functions
tr.position /l The position in world coordinates

tr.localPosition /l The position relative to its parent

PEARSON 22

Unity GameObject Components

* Transform component

— Controls position, rotation, and scale

Transform tr = go.GetComponent<Transform>();

— Also controls hierarchy of objects in the scene
tr.parent // The parent of this transform in the hierarchy

— Children can be iterated over with a foreach loop
foreach (Transform tChild in tr) {..}

— Instance variables and functions

tr.position /l The position in world coordinates
tr.localPosition /l The position relative to its parent
tr.rotation // The rotation in world coordinates

PEARSON 22

Unity GameObject Components

* Transform component

— Controls position, rotation, and scale

Transform tr = go.GetComponent<Transform>();

— Also controls hierarchy of objects in the scene
tr.parent // The parent of this transform in the hierarchy

— Children can be iterated over with a foreach loop
foreach (Transform tChild in tr) {..}

— Instance variables and functions

tr.position /l The position in world coordinates
tr.localPosition /l The position relative to its parent
tr.rotation // The rotation in world coordinates
tr.localScale // The scale (always in local coordinates)

PEARSON 22

Unity GameObject Components

PEARSON 23
B ——

Unity GameObject Components

= MeshFilter component

PEARSON 23
B ——

Unity GameObject Components

= MeshFilter component

— The model that you see

PEARSON 23

Unity GameObject Components

= MeshFilter component

— The model that you see
MeshFilter mf = go.GetComponent<MeshFilter>();

PEARSON 23

Unity GameObject Components

= MeshFilter component

— The model that you see
MeshFilter mf = go.GetComponent<MeshFilter>();

— Attaches a 3D model to a GameObject

— Is actually a 3D shell of the object (3D objects in games are
hollow inside

— This MeshFilter is rendered on screen by a MeshRenderer
component

PEARSON 23

Unity GameObject Components

PEARSON 24
B ——

Unity GameObject Components

= Renderer component

PEARSON 24
B ——

Unity GameObject Components

= Renderer component

— Draws the GameObject on screen

PEARSON 24

Unity GameObject Components

= Renderer component

— Draws the GameObject on screen

Renderer rend = go.GetComponent<Renderer>();

PEARSON 24

Unity GameObject Components

= Renderer component

— Draws the GameObject on screen

Renderer rend = go.GetComponent<Renderer>();

— Usually, this is a MeshRenderer
* Renderer is the superclass for MeshRenderer
- So, Renderer is almost always used in code

PEARSON 24

Unity GameObject Components

= Renderer component

— Draws the GameObject on screen

Renderer rend = go.GetComponent<Renderer>();

— Usually, this is a MeshRenderer
* Renderer is the superclass for MeshRenderer
- So, Renderer is almost always used in code

— Combines the MeshFilter with a Material (which contains
various Textures and a Shader)

PEARSON 24

Unity GameObject Components

PEARSON 25
B ——

Unity GameObject Components

= Collider component

PEARSON 25
B ——

Unity GameObject Components

= Collider component

— The physical presence of the GameObejct

PEARSON 25

Unity GameObject Components

= Collider component

— The physical presence of the GameObejct
Collider coll = go.GetComponent<Collider>();

PEARSON 25

Unity GameObject Components

= Collider component

— The physical presence of the GameObejct
Collider coll = go.GetComponent<Collider>();

— There are four types of collider (in order of complexity)
- Sphere Collider — The fastest type. A ball or sphere.
« Capsule Collider — A pipe with spheres at each end. 2nd fastest.

PEARSON 25

Unity GameObject Components

= Collider component

— The physical presence of the GameObejct
Collider coll = go.GetComponent<Collider>();

— There are four types of collider (in order of complexity)
- Sphere Collider — The fastest type. A ball or sphere.
« Capsule Collider — A pipe with spheres at each end. 2nd fastest.
- Box Collider — A rectangular solid. Useful for crates, cars, torsos, etc.

PEARSON 25

Unity GameObject Components

= Collider component

— The physical presence of the GameObejct
Collider coll = go.GetComponent<Collider>();

— There are four types of collider (in order of complexity)
- Sphere Collider — The fastest type. A ball or sphere.
« Capsule Collider — A pipe with spheres at each end. 2nd fastest.
- Box Collider — A rectangular solid. Useful for crates, cars, torsos, etc.
* Mesh Collider — Collider formed from a MeshFilter. Much slower!

PEARSON
B

25

Unity GameObject Components

= Collider component

— The physical presence of the GameObejct
Collider coll = go.GetComponent<Collider>();

— There are four types of collider (in order of complexity)
- Sphere Collider — The fastest type. A ball or sphere.
« Capsule Collider — A pipe with spheres at each end. 2nd fastest.
- Box Collider — A rectangular solid. Useful for crates, cars, torsos, etc.

* Mesh Collider — Collider formed from a MeshFilter. Much slower!
— Only convex Mesh Collider can collide with other Mesh Colliders

PEARSON 25

Unity GameObject Components

= Collider component

— The physical presence of the GameObejct
Collider coll = go.GetComponent<Collider>();

— There are four types of collider (in order of complexity)
- Sphere Collider — The fastest type. A ball or sphere.
« Capsule Collider — A pipe with spheres at each end. 2nd fastest.
- Box Collider — A rectangular solid. Useful for crates, cars, torsos, etc.

* Mesh Collider — Collider formed from a MeshFilter. Much slower!
— Only convex Mesh Collider can collide with other Mesh Colliders
— Much, much slower than the other three types

PEARSON 25

Unity GameObject Components

= Collider component

— The physical presence of the GameObejct
Collider coll = go.GetComponent<Collider>();

— There are four types of collider (in order of complexity)
- Sphere Collider — The fastest type. A ball or sphere.
« Capsule Collider — A pipe with spheres at each end. 2nd fastest.
- Box Collider — A rectangular solid. Useful for crates, cars, torsos, etc.

* Mesh Collider — Collider formed from a MeshFilter. Much slower!
— Only convex Mesh Collider can collide with other Mesh Colliders
— Much, much slower than the other three types

— Unity physics are performed by the NVIDIA PhysX engine

PEARSON
B

25

Unity GameObject Components

= Collider component

— The physical presence of the GameObejct
Collider coll = go.GetComponent<Collider>();

— There are four types of collider (in order of complexity)
- Sphere Collider — The fastest type. A ball or sphere.
« Capsule Collider — A pipe with spheres at each end. 2nd fastest.
« Box Collider — A rectangular solid. Useful for crates, cars, torsos, etc.

* Mesh Collider — Collider formed from a MeshFilter. Much slower!
— Only convex Mesh Collider can collide with other Mesh Colliders
— Much, much slower than the other three types

— Unity physics are performed by the NVIDIA PhysX engine

— Colliders will not move without a Rigidbody component

Unity GameObject Components

PEARSON 26
B ——

Unity GameObject Components

* Rigidbody component

PEARSON 26
B ——

Unity GameObject Components

* Rigidbody component

— The physical simulation of the GameObject

PEARSON 26

Unity GameObject Components

* Rigidbody component

— The physical simulation of the GameObiject
Rigidbody rigid = go.GetComponent<Rigidbody>();

PEARSON 26

Unity GameObject Components

* Rigidbody component

— The physical simulation of the GameObiject
Rigidbody rigid = go.GetComponent<Rigidbody>();

— Handles velocity, bounciness, friction, gravity, etc.

— Updates every FixedUpdate()
* This is exactly 50 times per second

PEARSON 26

Unity GameObject Components

* Rigidbody component

— The physical simulation of the GameObiject
Rigidbody rigid = go.GetComponent<Rigidbody>();
— Handles velocity, bounciness, friction, gravity, etc.

— Updates every FixedUpdate()
* This is exactly 50 times per second

— If Rigidbody isKinematic == true, the collider will move, but
position will not change automatically due to velocity

PEARSON 26

Unity GameObject Components

* Rigidbody component
— The physical simulation of the GameObiject
Rigidbody rigid = go.GetComponent<Rigidbody>();
— Handles velocity, bounciness, friction, gravity, etc.

— Updates every FixedUpdate()
* This is exactly 50 times per second

— If Rigidbody isKinematic == true, the collider will move, but
position will not change automatically due to velocity

rigid.isKinematic = true; //rigid will not move on its own

PEARSON 26

Unity GameObject Components

* Rigidbody component
— The physical simulation of the GameObiject
Rigidbody rigid = go.GetComponent<Rigidbody>();
— Handles velocity, bounciness, friction, gravity, etc.

— Updates every FixedUpdate()
* This is exactly 50 times per second

— If Rigidbody isKinematic == true, the collider will move, but
position will not change automatically due to velocity

rigid.isKinematic = true; //rigid will not move on its own

— Colliders will not move without a Rigidbody component

PEARSON 26

Unity GameObject Components

PEARSON 27
B ——

Unity GameObject Components

= (Script) components

PEARSON 27
B ——

Unity GameObject Components

= (Script) components

— Any C# class that you write

PEARSON ryg

Unity GameObject Components

= (Script) components

— Any C# class that you write
HelloWorld hw = go.GetComponent<HelloWorld>();

PEARSON ryg

Unity GameObject Components

= (Script) components

— Any C# class that you write
HelloWorld hw = go.GetComponent<HelloWorld>();

— Because C# scripts are handled as components, several can
be attached to the same GameObject

* This enables more object-oriented programming
* You'll see several examples throughout the book

PEARSON 27

Unity GameObject Components

= (Script) components

— Any C# class that you write
HelloWorld hw = go.GetComponent<HelloWorld>();

— Because C# scripts are handled as components, several can
be attached to the same GameObject

* This enables more object-oriented programming
* You'll see several examples throughout the book

— Public fields in your scripts will appear as editable fields in
the Unity Inspector

PEARSON 27

Unity GameObject Components

= (Script) components

— Any C# class that you write
HelloWorld hw = go.GetComponent<HelloWorld>();

— Because C# scripts are handled as components, several can
be attached to the same GameObject

* This enables more object-oriented programming
* You'll see several examples throughout the book

— Public fields in your scripts will appear as editable fields in
the Unity Inspector

* However, Unity will often alter the names of these fields a bit

PEARSON 27

Unity GameObject Components

= (Script) components

— Any C# class that you write
HelloWorld hw = go.GetComponent<HelloWorld>();
— Because C# scripts are handled as components, several can
be attached to the same GameObject
* This enables more object-oriented programming
* You'll see several examples throughout the book
— Public fields in your scripts will appear as editable fields in
the Unity Inspector

- However, Unity will often alter the names of these fields a bit
— The class name ScopeExample becomes Scope Example (Script).

PEARSON 27

Unity GameObject Components

= (Script) components

— Any C# class that you write
HelloWorld hw = go.GetComponent<HelloWorld>();
— Because C# scripts are handled as components, several can
be attached to the same GameObject
* This enables more object-oriented programming
* You'll see several examples throughout the book
— Public fields in your scripts will appear as editable fields in
the Unity Inspector

- However, Unity will often alter the names of these fields a bit
— The class name ScopeExample becomes Scope Example (Script).
— The variable trueorFalse becomes True Or False.

PEARSON 27

Unity GameObject Components

= (Script) components

— Any C# class that you write
HelloWorld hw = go.GetComponent<HelloWorld>();
— Because C# scripts are handled as components, several can
be attached to the same GameObiject
* This enables more object-oriented programming
* You'll see several examples throughout the book
— Public fields in your scripts will appear as editable fields in
the Unity Inspector

- However, Unity will often alter the names of these fields a bit
— The class name ScopeExample becomes Scope Example (Script).
— The variable trueOrFalse becomes True Or False.
— The variable graduationAge becomes Graduation Age.

Unity GameObject Components

= (Script) components

— Any C# class that you write
HelloWorld hw = go.GetComponent<HelloWorld>();
— Because C# scripts are handled as components, several can
be attached to the same GameObject
* This enables more object-oriented programming
* You'll see several examples throughout the book
— Public fields in your scripts will appear as editable fields in
the Unity Inspector

* However, Unity will often alter the names of these fields a bit
— The class name ScopeExample becomes Scope Example (Script).
— The variable trueorFalse becomes True Or False.
— The variable graduationAge becomes Graduation Age.
— The variable goldenRatio becomes Golden Ratio.

Chapter 19 — Summary

PEARSON 28
B ———

Chapter 19 — Summary

= Learned about declaring and defining C# variables

PEARSON 28

Chapter 19 — Summary

= Learned about declaring and defining C# variables

= Learned several important C# variable types

PEARSON 28

Chapter 19 — Summary

= Learned about declaring and defining C# variables

= Learned several important C# variable types

— These all start with lowercase letters

PEARSON 28

Chapter 19 — Summary

= Learned about declaring and defining C# variables

= Learned several important C# variable types

— These all start with lowercase letters

= Learned naming conventions used in this book

PEARSON 28

Chapter 19 — Summary

Learned about declaring and defining C# variables

= Learned several important C# variable types

— These all start with lowercase letters
= Learned naming conventions used in this book

* Important Unity Variable Types

PEARSON 28

Chapter 19 — Summary

Learned about declaring and defining C# variables

= Learned several important C# variable types

— These all start with lowercase letters
= Learned naming conventions used in this book

* Important Unity Variable Types

— These all start with uppercase letters

PEARSON 28

Chapter 19 — Summary

Learned about declaring and defining C# variables

= Learned several important C# variable types

— These all start with lowercase letters
= Learned naming conventions used in this book

* Important Unity Variable Types

— These all start with uppercase letters

= Learned several Unity GameObject components

PEARSON 28

Chapter 19 — Summary

= Learned about declaring and defining C# variables

= Learned several important C# variable types

— These all start with lowercase letters
= Learned naming conventions used in this book

* Important Unity Variable Types

— These all start with uppercase letters
= Learned several Unity GameObject components

* Next chapter will introduce you to Boolean
operations and the conditionals used to control C#
code

PEARSON 28

